
1 March 1998 Delphi Informant

March 1998, Volume 4, Number 3

DCOM Streaming
Passing Delphi Objects to a DCOM Server

Cover Art by: Tom McKeith

ON THE COVER
6 DCOM Streaming � David Body
Automatic marshaling is terrific, but what if you need to pass data that
isn’t automation-compatible? Mr Body shares his slick technique for
using Delphi’s component streaming mechanism to pass entire objects
along the DCOM trail — and still not have to play marshal yourself.

FEATURES
11 Informant Spotlight
Deploying ActiveX Controls � Dan Miser
Swell! You’ve created an ActiveX control. Getting it “out there” to users,
however, is another story. Mr Miser lays out the issues and their solu-
tions when it comes to Web deployment.

15 In Development
Sounds Gud to Me � Rod Stephens
Do your users need to search for names without knowing the exact
spelling? Check out Mr Stephens’ Delphi implementation of proven
Soundex algorithms. You’ll like what you hear.

19 DBNavigator
More Code Editor Tricks � Cary Jensen, Ph.D.
You read Dr Jensen’s article regarding Code Insight last month, so you’re
hip to all of the Code Editor’s tricks. Think again! There’s still plenty you
don’t know about the tool you use every day.

23 Columns & Rows
Developing Object Databases � Chu Moy
Things can get confusing when OOP meets a relational database. Mr
Moy says the object database, POET, is the answer, and puts one to
work with Delphi 3. Is there an ODBMS in your future?

29 Sights & Sounds
Multimedia Buttons � Christopher Coppola
Is the standard Button component ill suited to your way-cool inter-
face? Mr Coppola shares his techniques for creating buttons that
blend with the environment — and make a little noise.

36 The API Calls
Restoring Animation � John Ayres
Ever notice that Delphi-created applications don’t exhibit that cute
animated effect when they’re minimized or restored? Well so has
Mr Ayres, and he knows what to do about it.

REVIEWS
38 Crystal Reports Professional 6.0

Product Review by Warren Rachele

42 Rubicon for Delphi
Product Review by Peter Hyde

45 Delphi Developer’s Handbook
Book Review by Alan Moore, Ph.D.

DEPARTMENTS
2 Delphi Tools
5 Newsline
46 File | New by Alan Moore, Ph.D.

2 March 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

LEAD Technologies Announces LEADTOOLS 9.0

LEAD Technologies

announced LEAD-
TOOLS 9.0, the
company’s imaging
toolkit. This version
offers more than 500
functions, properties,
and methods to inte-
grate black and white,
grayscale, and color
imaging into applica-
tions. Among the new
features are common
dialog boxes to speed
development, support for
over 50 image file formats,
and optional FlashPix, video,
and OCR modules.

The common dialog boxes
extend Windows common
functions to provide image-
specific capabilities, such as
image processing and conver-
sion. The dialog boxes also
offer thumbnail previewing
of image changes.

LEADTOOLS 9.0 offers
additional import/export
Snowbound Announces R
capabilities, including
increased DICOM multi-
page support with 9- to 16-
bit grayscale and window lev-
eling, and 16-bit-per-pixel
grayscale TIF support.

Version 9 also offers ISIS
high-speed scanning, annota-
tion support to include
read/write support for the
Wang annotation file format,
multi-level password access
to annotation, hyperlinks for
all annotation objects,
increased control over free-
asterMaster 7.0

IDEAL Introduces Virtual P
hand drawing, and angle and
line size support.

Included with the toolkit
are source code examples for
Delphi, Borland C/C++,
Microsoft Visual C/C++,
Visual Basic, Visual FoxPro,
Access, and Java Script.

LEAD Technologies
Price: From US$295 for the VBX Pro
package, to US$1,995 for the Pro
Express package.
Phone: (704) 332-5532
Web Site: http://www.leadtools.com
rint Engine 2.2
Snowbound Software Corp.
introduced RasterMaster 7.0,
a set of imaging tools for
Windows 95/NT, Windows
3.x, and Macintosh 68K and
PPC. This version includes
enhanced support for the pre-
press, medical imaging, bank-
ing, and defense industries.

Raster image support
includes TIFF/CMYK,
JPEG/CMYK, JEDMICS,
Flashpix, Winfax, DICOM,
Alpha Channel, Group 4,
Group 3, CALS, PNG,
PhotoCD, BMP, PCX, PICT,
Targa, and others. Functions
include CMYK 4 plane sup-
port, RGB to CMYK and
CMYK to RGB conversion
features, anti-aliasing (in the
Silver toolkit), fit to Window,
fit to width/height, image
encryption, reading TIFF tags,
animated GIF, Winfax, display
callbacks, erase rectangle/black
border removal, 10- to 16-bit
grayscale support, and tiled
image support.

RasterMaster 7.0 is avail-
able as a Windows 95/NT
DLL, Windows 95/NT
ActiveX/OCX, or Windows
3.x DLL.
Snowbound Software Corp.
Price: US$1,350 for Silver toolkit;
US$1,995 for Platinum toolkit.
Phone: (617) 630-9495
Web Site: http://www.snowbnd.com
IDEAL Software announced
Virtual Print Engine 2.2,
which offers developers
enhanced control over printed
output from their Windows
applications. Developers using
Delphi, Visual Basic, C/C++,
FoxPro, and other languages
can dynamically create, pre-
view, and print reports, rich
documents, drawings, etc. by
calling functions.

Objects such as text, lines,
polygons, bitmaps (JPEG,
PNG, TIFF, GIF, BMP, PCX,
WMF, EMF, DXF), and 21
different barcodes can be
positioned, rotated, and scaled
with 0.1 mm precision on any
number of pages. The vector
graphics offer a free, scalable
WYSIWYG preview and
printer-independent output.

The package includes the
OCX, VCL, DLL, and over
600KB of sample-sources
for all common program-
ming languages, and is
available in 16- and 32-bit
versions. There are no run-
time fees or royalties.

IDEAL Software
Price: US$548
Phone: 49 2131 9800 23
Web Site: http://www.idealsoftware.com

http://www.leadtools.com
http://www.snowbnd.com
http://www.idealsoftware.com
http://www.leadtools.com
http://www.snowbnd.com

3 March 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

MathTools Launches MATCOM

MathTools Ltd. announced

MATCOM, a MATLAB
compiling and integration
solution for Delphi,
Microsoft Excel, and Visual
Basic.

MATCOM allows MAT-
LAB users to incorporate
MATLAB’s numerical and
computational strength into
GUI and spreadsheet tools.
Scientists and engineers can
develop algorithms in MAT-
LAB and automatically
incorporate them in applica-
tions created with these
tools, saving a manual trans-
lation phase. The integration
is achieved by compiling the
algorithms to independent,
royalty-free DLLs using
MATCOM and incorporat-
ing the DLLs into an appli-
cation. Compilation is auto-
Ashley Godfrey Releases
matic, using a smart project
manager.

MathTools Ltd.
Price: US$99 for single student
license, US$249 for single academic
license, and US$499 for single com-
mercial license; additional US$24,
 Delphi Voyager 2
US$49, and US$99 for Delphi
Integration add-in for the student, aca-
demic, and commercial licenses,
respectively; site licenses and other
add-ins are also available.
Phone: (888) 628-4866 or
(212) 208-4476
Web Site: http://www.mathtools.com
Ashley Godfrey has released
Delphi Voyager 2, the updat-
ed version of LinkWizard for
Delphi. Delphi Voyager, a
resource explorer and
resource management facility,
offers a rebuilt user interface.
Combining Delphi, ActiveX,
the BDE, and the Internet,
Delphi Voyager enables
Delphi programmers to
explore and manage their
other resources.

Delphi Voyager enables the
viewing of the structure and
contents of any regis-
tered ActiveX type
library. Delphi
Voyager lists all regis-
tered type libraries
without the need to
specify an OCX or
DLL for every
ActiveX library to be
viewed. With Delphi
3 installed, Delphi
Voyager can decom-
pile that library.

Delphi Voyager also
browses ActiveX
interfaces. CLSIDs
are displayed and, along with
ActiveX interfaces, can be
linked to their containing
type library.

Delphi Voyager explores
BDE installations, enumer-
ates databases and their alias-
es, lists the tables of each
alias, and displays their asso-
ciated parameters. Also
included are links to
Borland’s BDE tech site.

Delphi Voyager also con-
tains a view of the Internet
sites most likely to be used
by a Delphi programmer. In
addition, Delphi Voyager
contains a Delphi Super
Page offline viewer, which
allows a programmer to
search for and obtain a com-
ponent by clicking on a
download button.

Ashley Godfrey
Price: US$60 for e-mailed copy;
US$65 for diskette.
E-Mail: godfa@hotmail.com
Web Site: http://members.-
tripod.com/~nfi/index.html

http://members.tripod.com/~nfi/index.html
http://members.tripod.com/~nfi/index.html
http://www.mathtools.com

4 March 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Imagination Introduces IMAGinE ActiveX Control

Imagination Software, Inc.

introduced the IMAGinE
ActiveX control, a thin-
client, intranet imaging solu-
tion designed for use by the
government, Fortune 500
companies, integrators, inde-
pendent software vendors,
and value-added resellers.
The ActiveX control allows
paper management capabili-
ties to be added to an
intranet. Its features include
displaying, printing, annotat-
ing, fiximage, scanning,
OCR, ICR, OMR, reading
barcode, and processing
forms. IMAGinE also comes
with pre-built imaging appli-
cation prototypes and their
source codes. This ActiveX
control can be used with
Indigo Rose Announces A
Delphi, Visual Basic, Power
Builder, Visual C++, or any
developer language that sup-
ports ActiveX.

IMAGinE ActiveX control
runs under Windows 95/NT,
and is compatible with all
OLE automation applications.
utoPlay Menu Studio 1.1

Seagate Launches Crysta
Imagination Software, Inc.
Price: From US$799 for IMAGinE
Desktop, to US$4,999 for the IMAGinE
Suite Plus.
Phone: (800) IMAGE10
Web Site: http://www.imagination-
software.com
l Info 6
Indigo Rose Corp.
announced the release of
AutoPlay Menu Studio 1.1
for Windows 95 and
Windows NT 4.0. This tool
is designed for multimedia
software developers, CD-
ROM content providers, net-
work administrators, or any-
one using CD-ROM as a
distribution medium.
This WYSIWYG develop-

ment tool is designed for creat-
ing CD-ROM menu systems
that automatically load and
execute upon insertion of the
CD-ROM. The drag-and-drop
environment allows developers
to create a customized menu
system. Multimedia Action
Buttons can be used to accom-
plish a variety of tasks without
programming, including exe-
cuting programs, jumping to
Internet/intranet sites, opening
documents, browsing local,
CD-ROM, and network dri-
ves, sending e-mail, starting an
installation program, printing
files, displaying Help files, and
downloading via FTP.

AutoPlay Menu Studio
includes full support for UNC
filenames, integrated palette
management, alignment tools,
undo/redo, background gradi-
ents, bitmap tiling, and a
graphics and sound library.
Indigo Rose Corp.
Price: US$195
Phone: (800) 665-9668 or
(204) 946-0263
Web Site: http://www.indigorose.com
Seagate Software announced
Seagate Crystal Info 6, a suite
of products that simultaneous-
ly incorporate Online
Analytical Processing (OLAP)
and push technology.

Crystal Info 6 integrates
OLAP functionality and
Crystal Reports into Crystal
Info’s enterprise-wide reporting
infrastructure. The Info Cube
Designer extracts information
from relational databases and
consolidates the data into
multi-dimensional OLAP
cubes. The Info Worksheet
then allows users to view the
contents from various perspec-
tives. The interface allows users
to pivot rows and columns,
drill down, drill across, and
insert graphs and calculations.
The underlying data-structures
of Crystal Info 6 are compati-
ble with Seagate Holos.

Integrating Crystal Reports
Designer 6 allows users to cre-
ate presentation-quality
reports, and distribute them
throughout the enterprise.
Page-On-Demand technology
downloads only the required
pages of a report.

Crystal Info 6 offers report-
viewing and distribution and
OLAP analysis via the Web,
using HTML, ActiveX, or
Java. It also integrates push
technology as a way to access
information via the Web,
allowing users to flag reports
and OLAP cubes and objects.

Seagate Software
Price: US$749 per user for client license
and Report/Query and OLAP add-in mod-
ules; license and modules are also sold
separately.
Phone: (800) 877-2340 or
(604) 681-3435
Web Site: http://www.-
seagatesoftware.com

http://www.imaginationsoftware.com
http://www.imaginationsoftware.com
http://www.indigorose.com
http://www.seagatesoftware.com
http://www.seagatesoftware.com

5 March 1998 Delphi Informant

News
L I N E

Mar ch 1998

Borland Expands in Eastern Europe

Apogee Awarded Premier Partner Status by Borland
Frankfurt, Germany —
Borland announced it has
expanded its operations in
Eastern Europe by establish-
ing Borland Magyarorszag.
Borland has transformed
Delphi Szoft (Delphi
Software), the company’s
master distributor in
Hungary since January
1995, into Borland
Magyarorszag. This venture
reinforces Borland’s presence
in Hungary, providing direct
contact and focus for the
company’s Hungarian cus-
tomer base.

Borland is a major
provider of development
Keshet Broadcasting to U
Windows-based Traffic S
tools in Hungary and has
established a strong market
share as a result of its focus
on the market. Borland is
also a supplier of develop-
ment tools to the Hungarian
Borland Ships JBuilder Cl

se Delphi in
ystem
Ministry of Education.
For more information on

Borland Magyarorszag, visit
its Web site at
http://www.borland.hu/ or
call (49) 6103 979-281.
Marlboro, MA — Apogee
Information Systems, Inc.
announced that Borland has
given the firm Premier Partner
status, providing increased
access to strategic business and
technical information.

Borland established the
Premier Partner program in
1996 to shift the focus of the
company to larger clients and
enterprise-wide solutions.
Over half of their revenues
come from development tools
specifically designed for those
markets. Apogee’s success
delivering services has led to
rapid, sustained growth and
the upgraded partnership with
Borland.

Apogee Information Systems
is a custom application con-
sulting and development firm
specializing in multi-tier
Information Network solu-
tions. The company assists
clients worldwide in integrat-
ing data and business processes
across legacy, client/server,
Internet, and intranet environ-
ments. For more information,
call (508) 481-1400 or e-mail
cpatton@apogeeis.com.
ient/Server Suite
Jerusalem, Israel — El-On
Software Systems Ltd. has
signed an agreement with
IBM Israel to build a
Windows-based broadcasting
traffic system for Keshet Ltd.,
one of Israel’s three commer-
cial television concessionaires.
The 32-bit application is
being developed using Delphi
3. Approximately 50 client
stations will be linked to an
IBM RS/6000 server running
Oracle version 7.3.
The application will be

object-oriented and will
include a visual component to
handle program scheduling.
The component supports
Windows 95 functions. The
application will enable users
to display various objects
along a time-ruler, as well as
place an object within a con-
tainer object, while modifying
the container’s properties. It
will also include a Win32 IPC
component that will synchro-
nize data across the network.
All the components will sup-
port Hebrew and English.
The application will use the

Borland Database Engine and
Oracle’s SQL/NET client for
direct SQL access to the data-
base. The system will manage
all aspects of controlling the
station, including advertising
spot management, tape
library management, and pro-
gram scheduling.
Las Vegas, NV — Borland
announced JBuilder
Client/Server Suite, an addi-
tion to their line of visual Java
development tools. JBuilder
Client/Server Suite supports
development of large-scale,
multi-platform Java applica-
tions by integrating Visigenic
Software’s VisiBroker ORB
for seamless CORBA integra-
tion; Borland DataGateway
Enterprise for high-perfor-
mance database connectivity;
InterSolv PVCS software for
team management and ver-
sion control; Borland’s SQL
tools for robust client/server
development; and
BeansExpress for JavaBeans
creation. JBuilder also
includes the DataExpress
database architecture and a
fully functional CORBA e-
commerce reference applica-
tion (with source code).
JBuilder’s scalable, compo-

nent-based environment is
designed for all levels of infor-
mation network development
projects, ranging from applets
and applications that require
networked database connec-
tivity, to client/server and
enterprise-wide, distributed
multi-tier systems. It supports
100% Pure Java, JDK 1.1,
JavaBeans, JFC, CORBA,
RMI, JDBC, and all major
corporate database servers.

JBuilder Client/Server Suite
is available for US$2,495.
Owners of other Borland
tools can purchase JBuilder
Client/Server Suite for
US$2,000. For more infor-
mation, call (800) 233-2444,
or visit the JBuilder Web site
at http://www.borland.-
com/jbuilder.
Borland Buys Visigenic
Borland has signed an agree-

ment to acquire Visigenic
Software, a developer of object
request broker (ORB) software.

Visigenic shareholders will
receive .81988 shares of Borland
common stock for each outstand-

ing share of Visigenic stock.
Approximately 12.5 million shares
of Borland stock will be issued at
the close of the transaction, slated

for the first quarter of 1998.
The companies also plan to

build application server software
that will combine Visigenic’s

VisiBroker ORB with Borland’s
JBuilder Java development tool.

Borland’s chief technology officer,
Rick LeFaivre, will head research
and development for the com-

bined companies.
Visigenic will gain a broader dis-

tribution channel and the tools to
make its ORB more competitive.
The acquisition will not affect the

company’s existing licensing deals
with Oracle, Netscape

Communications, or other soft-
ware vendors.

http://www.borland.com/jbuilder
http://www.borland.com/jbuilder
http://www.borland.hu/

6 March 1998 Delphi Informant

On the Cover
Delphi 3 / DCOM

By David W. Body
DCOM Streaming
Using Delphi’s Component-Streaming Mechanism
to Pass Objects through DCOM

Developers increasingly find it useful to create distributed applications, so
called because their functionality is distributed across multiple processes

running on the same or different machines on a network. These processes com-
municate and cooperate with each other to perform the functions required of
the application as a whole.
Delphi 3 provides excellent support for a
variety of distributed-application techniques.
For example, developers can use the Remote
Data Broker technology in the Delphi 3
Client/Server Suite to create and deploy
multi-tiered database applications. In these,
the client process typically communicates
with a middle-tier process that implements
and enforces business rules. In turn, the
middle-tier process typically communicates
with a database-server process. These three
processes can be deployed in a variety of
configurations, but often each is run on a
separate computer on the network.

COM Automation
Delphi 3 makes it easy to create other
kinds of distributed applications without
using the Remote Data Broker technology.
The easiest way to do this is with
COM/DCOM “automation.” Automation
clients can call procedures and functions in
automation servers running in other
processes. Through DCOM, automation
clients can call procedures and functions in
automation servers running on other
machines on the network. For a good intro-
duction to creating automation servers and
clients with Delphi 3, see Jeremy Rule’s
article, “Delphi 3 DCOM,” in the
September 1997 Delphi Informant.

The nice thing about COM/DCOM automa-
tion is that it automatically takes care of all
the details of passing parameters and return
values across process and machine boundaries
(a process known as marshaling). Part of the
price you pay for this automatic marshaling is
that you can use only automation-compatible
data types for your parameters and function-
return values. Figure 1 contains a list of
automation-compatible data types.

At first this seems a rather serious limitation.
What if you want to pass a Pascal object as a
procedure parameter, or return a Pascal
object from a function call? If you’re limited
to the data types listed in Figure 1, you have
no choice but to break your object into its
separate fields, and pass these one-by-one.
This requires writing a separate procedure or
function to pass each field, resulting in less-
readable and less-maintainable code. Worse,
because of the overhead associated with mar-
shaling variables through COM/DCOM,
your application’s performance will suffer
dramatically if you must pass many fields in
this manner.

Pascal Type OLE Variant Type Description

Smallint VT_I2 2-byte signed integer
Integer VT_I4 4-byte signed integer
Single VT_R4 4-byte real
Double VT_R8 8-byte real
Currency VT_CY currency
TDateTime VT_DATE date
WideString VT_BSTR binary string
IDispatch VT_DISPATCH pointer to IDispatch in
SCODE VT_ERROR OLE error code
WordBool VT_BOOL True = -1, False = 0
OleVariant VT_VARIANT OLE Variant
IUnknown VT_UNKNOWN pointer to IUnknown i
Byte VT_UI1 1-byte signed integer

Figure 1: A list of automation-compatible data types.

On the Cover

TSystemStatus = class(TComponent)
private

FComputerName: string;
FUserName: string;
FMajorVersion: Integer;

FMinorVersion: Integer;

FBuildNumber: Integer;

FPlatformID: Integer;

FTotalPhys: Integer;

FAvailPhys: Integer;

FTotalPageFile: Integer;

FAvailPageFile: Integer;

FTotalVirtual: Integer;

FAvailVirtual: Integer;

public
procedure GetSystemStatus;

procedure DisplaySystemStatus(Strings: TStrings);

published
property ComputerName: string

read FComputerName write FComputerName;
Streaming Objects
If only there were an easy way to convert complex Pascal
objects to and from one or more of the types listed in
Figure 1, i.e. those automatically marshaled by COM. Well
there is, and it’s an integral part of Delphi. Most Delphi
developers are aware that you can right-click a Delphi form
at design time, and choose View as Text. Doing so will gen-
erate text listing the form’s attributes — including all of the
form’s components and their attributes (see Figure 2).
When you right-click the text listing of your form’s attrib-
utes and choose View as Form, Delphi converts the text
back into a graphical representation of your form.

Delphi uses a similar streaming technique to save your form
as a .DFM file. In this case, Delphi uses a more efficient
binary representation of your form and its components. This
takes less space, and makes saving and retrieving forms a little
faster than using a text representation. It turns out that
Delphi can automatically convert any component derived
from TComponent to and from the text and binary represen-
tations used with forms and their components. All of the
component’s published (and streamable) read/write properties
are automatically included in this conversion process. (Note:
object Form1: TForm1

Left = 200

Top = 108

Width = 696

Height = 480

Caption = 'Form1'

Font.Charset = DEFAULT_CHARSET

Font.Color = clWindowText

Font.Height = -11

Font.Name = 'MS Sans Serif'

Font.Style = []

PixelsPerInch = 96

TextHeight = 13

object Button1: TButton

Left = 306

Top = 214

Width = 75

Height = 25

Caption = 'Button1'

TabOrder = 0

end
end

Figure 2: A text listing of a form’s attributes.

7 March 1998 Delphi Informant
A property needs to be published and streamable.
Some properties use the stored directive to deter-
mine if the property writes itself out to a stream.
If stored is False, the property will not be sent
over — even if it’s published.)

Through COM/DCOM automation we can use
Delphi’s built-in object-streaming capabilities to
pass entire components as procedure parameters
or function-return values. For example, we could
simply convert a component to text, pass the text
from one process to another as a WideString,
then convert the text back into a component in
the second process. Of course, it’s slightly more
efficient to convert a component to and from a
binary stream of bytes (the way Delphi stores
.DFM files) rather than using the text representa-

tion. Using this approach, we can pass components across
process and machine boundaries with a construct known as a
variant array of bytes.

Listing One (beginning on page 9) is a Pascal unit that con-
tains two pairs of functions used to convert any object derived
from TComponent to and from automation-compatible data

terface

nterface
property UserName: string
read FUserName write FUserName;

property MajorVersion: Integer

read FMajorVersion write FMajorVersion;

property MinorVersion: Integer

read FMinorVersion write FMinorVersion;

property BuildNumber: Integer

read FBuildNumber write FBuildNumber;

property PlatformID: Integer

read FPlatformID write FPlatformID;

property TotalPhys: Integer

read FTotalPhys write FTotalPhys;

property AvailPhys: Integer

read FAvailPhys write FAvailPhys;

property TotalPageFile: Integer

read FTotalPageFile write FTotalPageFile;

property AvailPageFile: Integer

read FAvailPageFile write FAvailPageFile;

property TotalVirtual: Integer

read FTotalVirtual write FTotalVirtual;

property AvailVirtual: Integer

read FAvailVirtual write FAvailVirtual;

end;

Figure 3: The interface of a TSystemStatus component.

procedure TForm1.Button1Click(Sender: TObject);

var
SystemStatus: TSystemStatus;

begin
SystemStatus := TSystemStatus.Create(Self);

try
SystemStatus.GetSystemStatus;

SystemStatus.DisplaySystemStatus(ListBox1.Items);

finally
SystemStatus.Free;

end;
end;

Figure 4: Putting the TSystemStatus component to work.

ure 5: The ActiveX page of the New Items dialog box.

On the Cover

function TSystemStatusAuto.Get_SystemStatus: OleVariant;

var
SS: TSystemStatus;

begin
SS := TSystemStatus.Create(nil);
try

SS.GetSystemStatus;

Result := ComponentToVariant(SS);

finally
SS.Free;

end;
end;

Figure 7: The Get_SystemStatus function.

ure 6: The Type Library Editor.
types. The ComponentToString and StringToComponent
functions will convert components to and from text repre-
sentations, respectively. The ComponentToVariant and
VariantToComponent functions will convert components to
and from binary variant-array representations.

An Example
As an example of how to use these functions, let’s suppose we
want to monitor the system status of another machine on the
network. Figure 3 depicts the interface of a TSystemStatus
component that captures in its properties certain system
attributes of interest. (Code for the implementation section is
included in the source code for this article; download instruc-
tions appear at the end of this article.) This component is for
illustration purposes only; you can modify it to suit your par-
ticular needs. The TSystemStatus component also implements
a procedure called DisplaySystemStatus, which will display
these attributes using a supplied TStrings parameter.

The TSystemStatus component is easy to use. Simply
create an instance of the component by calling
TSystemStatus.Create. A call to TSystemStatus.GetSystemStatus
will record a snapshot of the current system status in the
component’s properties. To display the system status, simply
call TSystemStatus.DisplaySystemStatus, passing it a TStrings
component into which the TSystemStatus component can write
its output. Figure 4 illustrates these steps in the context of an
ordinary Delphi application.

Server Application
It’s almost as easy to use TSystemStatus through COM/DCOM
automation. First, we need to create a server application to run
on the computer whose system attributes we want to monitor. By
adding an Automation Object we can give our server application
the ability to report the system status of its host. From the File

menu, choose New; then select the Automation Object icon from
the ActiveX tab, as shown in Figure 5. Enter a class name of
SystemStatus. Delphi will automatically create a type library for
you, and display the Type Library Editor (see Figure 6). Note
that Delphi has created a COM interface named ISystemStatus.

Click the Property icon to create a new property for the
ISystemStatus interface. Name this property SystemStatus,
change its data type to OleVariant, and change the Property

Type to Read Only. (Our TSystemStatus component is for
monitoring system status, not for modifying it.) Finally, click
the Refresh icon. Delphi will automatically create a skeleton

Fig

Fig
8 March 1998 Delphi Informant
for a function named Get_SystemStatus, which you should
complete as shown in Figure 7.

This function simply creates an instance of TSystemStatus, calls
the GetSystemStatus method, then converts the TSystemStatus
component into an OleVariant that can be returned as the func-
tion’s result. You will need to add the CompStream unit (again,
see Listing One) to your uses clause before compiling the server
application. After the server application is complete, be sure to
run it once with the /REGSERVER parameter to register it.

Figure 8: The client application at run time.

On the Cover

procedure TForm1.Button1Click(Sender: TObject);

var
SS: ISystemStatus;

SystemStatus: TSystemStatus;

begin
SS := CoSystemStatusAuto.CreateRemote(Edit1.Text);

SystemStatus := _

VariantToComponent(SS.SystemStatus) as TSystemStatus;

try
SystemStatus.DisplaySystemStatus(ListBox1.Items);

finally
SystemStatus.Free;

end;
end;

Figure 9: The client application uses this code to create, use,
and release the DCOM server.
Client Application
Now all we need is a client application that can retrieve and
display the system status from our server application. Our
client application will have a screen layout like that shown
in Figure 8. Clicking the button will execute the code in
Figure 9. You’ll need to import the type library from our
server application, and add the SystemStatus and
CompStream units to your uses clause before compiling.

As shown in Figure 9, the client application first acquires a
pointer to an ISystemStatus interface by calling
CoSystemStatusAuto.CreateRemote, passing the machine name
entered in the edit box. Delphi and COM/DCOM take care
of establishing a connection to the server application on the
specified machine. Our client then passes the OleVariant —
returned by the SystemStatus property of ISystemStatus — to
the VariantToComponent function, and casts the result to a
TSystemStatus component using the as operator. This gives
our client a local copy of the TSystemStatus component creat-
ed on the server, complete with all the properties set by the
server’s call to GetSystemStatus (refer to Figure 7).

Finally, the client displays the system status of the remote
machine by calling DisplaySystemStatus, and frees the
TSystemStatus component. That’s all there is to using the
TSystemStatus component to monitor the system status on a
remote machine.
9 March 1998 Delphi Informant
Practical Application
I have successfully used this technique to allow multiple users to
monitor and control complex calculation processes running on a
server. For example, the Iowa Legislative Fiscal Bureau uses a
Delphi application to project aggregate payroll costs for the
State of Iowa, using assumptions supplied by users. Multiple
users can simultaneously perform multiple projections. Each
projection uses actual payroll data from a database containing
approximately one million records. Depending on the size of the
specified population and the number of years being projected, a
single projection can take up to approximately 15 minutes to
complete. (Note: The server is a dual-processor 166MHz
Pentium Pro machine with 128MB of RAM running Windows
NT 4.0 and Microsoft SQL Server 6.5.)

The calculations required for each projection are performed
by a separate process running on the server, and are moni-
tored and controlled by a “calculator manager” application
also running on the server. The calculator manager communi-
cates with client applications running on user workstations
employing the technique described in this article. Performing
the calculations on the server in this manner improves perfor-
mance, decreases network traffic, and prevents sensitive pay-
roll data from leaving the server during the calculations.

Conclusion
Using the technique discussed in this article, you can easily
pass instances of any object derived from TComponent across
process or machine boundaries. The technique uses Delphi’s
built-in component-streaming support to convert a compo-
nent instance in one process into a data type that can be
automatically marshaled by COM/DCOM automation. We
pass the streamed component to the other process and con-
vert it back into a component instance, again using Delphi’s
built-in streaming support. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\MAR\DI9803DB.

David W. Body is the owner of Big Creek Software, a custom software develop-
ment and consulting firm specializing in business, financial, and legal applica-
tions (http://www.bigcreek.com). David is Borland Delphi 3 Client/Server certi-
fied, and president of the Central Iowa Delphi Users Group.
Begin Listing One — The CompStream Unit
unit CompStream;

interface

uses Classes;

function ComponentToString(Component: TComponent): string;
function StringToComponent(Value: string): TComponent;
function ComponentToVariant(Component: TComponent):

Variant;

http://www.bigcreek.com

On the Cover
function VariantToComponent(Value: Variant): TComponent;

implementation

function ComponentToString(Component: TComponent): string;
var
BinStream: TMemoryStream;

StrStream: TStringStream;

s: string;
begin
BinStream := TMemoryStream.Create;

try
StrStream := TStringStream.Create(s);

try
BinStream.WriteComponent(Component);

BinStream.Seek(0, soFromBeginning);

ObjectBinaryToText(BinStream, StrStream);

StrStream.Seek(0, soFromBeginning);

Result := StrStream.DataString;

finally
StrStream.Free;

end;
finally
BinStream.Free;

end;
end;

function StringToComponent(Value: string): TComponent;
var
StrStream: TStringStream;

BinStream: TMemoryStream;

begin
StrStream := TStringStream.Create(Value);

try
BinStream := TMemoryStream.Create;

try
ObjectTextToBinary(StrStream, BinStream);

BinStream.Seek(0, soFromBeginning);

Result := BinStream.ReadComponent(nil);
finally

BinStream.Free;

end;
finally
StrStream.Free;

end;
end;

function ComponentToVariant(Component: TComponent):

Variant;

var
BinStream: TMemoryStream;

Data: Pointer;

begin
BinStream := TMemoryStream.Create;

try
BinStream.WriteComponent(Component);

Result := VarArrayCreate([0,BinStream.Size-1],varByte);

Data := VarArrayLock(Result);

try
Move(BinStream.Memory^, Data^, BinStream.Size);

finally
VarArrayUnlock(Result);

end;
finally
BinStream.Free;

end;
end;

function VariantToComponent(Value: Variant): TComponent;

var
BinStream: TMemoryStream;

Data: Pointer;

begin
BinStream := TMemoryStream.Create;

try
Data := VarArrayLock(Value);

try
10 March 1998 Delphi Informant
BinStream.WriteBuffer(Data^,

VarArrayHighBound(Value,1)+1);

finally
VarArrayUnlock(Value);

end;
BinStream.Seek(0, soFromBeginning);

Result := BinStream.ReadComponent(nil);
finally
BinStream.Free;

end;
end;

end.

End Listing One

Informant Spotlight
Delphi 3.01 / ActiveX

By Dan Miser

Figure 1: The W

11 March 1998 Delphi Informant
Deploying ActiveX Controls
Techniques for Testing, Deployment, Security, and More

Last month, we offered a handy introduction of different ways to create and use
ActiveX controls within Delphi. This month, we’ll demonstrate how to deploy

those controls to a Web site, as well as how to debug your ActiveX controls.
Deploying ActiveX Controls
Deploying an ActiveX control to a Web server
is straightforward, but one wrong move and
people won’t be able to use the ActiveX con-
trol from their browsers. Fortunately, every-
thing you need to make your ActiveX deploy-
ment successful is wrapped up in one dialog
box. If you have an ActiveX project open —
for example, the CalendarX.DPR project we
created last month — you can select the
menu item Project | Web Deployment Options

to display the dialog box shown in Figure 1.
The options set here reflect a typical installa-
tion of Microsoft’s Personal Web Server,
which runs under Windows 95.
eb Deployment Options dialog box.
Note: If you fully qualify your URL with the
domain name, you must specify the protocol
(i.e. http://) in the Target URL edit box, or the
control will fail to download properly.
Alternatively, you can designate that the con-
trol is in the same directory by placing “./” in
Target URL.

Packages. The footprint required to create
even a minimal ActiveX control is a couple of
hundred kilobytes. We can reduce the size,
however, by using run-time packages. This
way, the user must only download the run-
time packages once, and can gain substantial
download savings each time they download
any Delphi control compiled with run-time
packages.

Using run-time packages for an ActiveX con-
trol is as simple as using run-time packages
for an application. Select Project | Options,
then select the Build with runtime packages

check box on the Packages page of the
Project Options dialog box. Once you’ve
compiled your project with run-time pack-
ages, you can enable the deployment of those
packages by checking the Deploy required

packages check box on the Project tab of the
Web Deployment Options dialog box.

Installing multiple files with your ActiveX con-
trol will require you to use some combination
of an .INF file and a .CAB file. An .INF file is
an installation script that points to the loca-

[Add.Code]

packages.ocx=packages.ocx

VCL30.dpl=VCL30.dpl

[packages.ocx]

file=http://dmiser.comps.com/delphi/packages.ocx

clsid={ 03B3F168-C13B-11D0-9BB9-00A024604D21 }

RegisterServer=yes

FileVersion=1,0,0,0

[VCL30.dpl]

file=http://www.borland.com/vcl30.cab

FileVersion=3,0,5,53

Figure 2: Sample .INF file for an ActiveX control built with
run-time packages.

<OBJECT ID="CalendarX1" WIDTH=320 HEIGHT=120

CLASSID="CLSID:7FD22F05-C0E1-11D0-9BB9-00A024604D21"

DATA="DATA:application/x-oleobject;BASE64,BS/Sf+HA0BGbuQCgJ

GBNIVRQRjAJVENhbGVuZGFyAARMZWZ0AgADVG9wAgAFV2lkdGgDQAEGSGVp

Z2h0AngLU3RhcnRPZldlZWsCAAAASA=">

</OBJECT>

Figure 3: An <OBJECT> tag for an imported ActiveX control.
(Note: There cannot be carriage returns in the actual DATA
string; they were added here for formatting purposes.)

Informant Spotlight
tions of all the files needed to make your ActiveX installation
complete. .CAB files allow multiple files to be distributed over
the Internet in compressed form, much like a .ZIP file. If you
distribute many files, or if the file sizes are large, you may want
to distribute the files in compressed mode via the .CAB file.

Borland has code-signed some of their run-time packages and
placed them in .CAB files on their Web site (http://www.-
borland.com). Code-signing these packages proves that the
run-time package files the end user receives are the same ones
that Borland developed (see Figure 2).

Code-signing. ActiveX controls pose a potential security risk
to clients who download them. For this reason, Microsoft has
proposed a technology called Authenticode. Authenticode
assures end users of the ActiveX control’s origin, and that it
hasn’t been tampered with since the control has been signed.
While this is not foolproof, it does provide some degree of
accountability for the majority of cases.

To obtain certification for your ActiveX control, you must
contact an authorized Certification Authority (one such
company is VeriSign; http://www.verisign.com). You can
apply for a certificate; upon acceptance, the authorized
Certification Authority will return a certificate file you can
use to sign a control.

For any serious ActiveX development, you must obtain the
ActiveX SDK from Microsoft. In the ActiveX SDK you’ll find
documentation, online resources, and a suite of programs to
help develop ActiveX content. For example, the program
MAKECER generates test certificates you can use for local
testing. For more information, visit http://www.microsoft.-
com/activex.

Deploy. When all the options have been properly set, select
Project | Web Deploy to execute the deployment. This will
copy the ActiveX control, an .INF file and a .CAB file if
appropriate, and a skeleton HTML file to the directory speci-
fied. If your Web site isn’t hosted locally, you can still deploy
all the files to a local directory and use the same method of
moving the files to your host directory after deployment.

One more note: Writing an ActiveX control or ActiveForm
that accesses a database requires the client machine to have a
12 March 1998 Delphi Informant
copy of the BDE (Borland Database Engine) installed.
Furthermore, the client machine must be able to physically
connect to the database. For this reason, database applications
are best suited to intranet deployment. If you do choose to
deploy an ActiveX control that needs database access, Delphi
3.01 includes a .CAB file and an .INF file to take care of the
BDE installation process. See the file BDEINST.TXT on the
Delphi 3.01 CD for more information on how to do this. On
the other hand, if you want a true thin-client solution over
the Internet, you will need to use MIDAS.

Using ActiveX in HTML
HTML syntax. ActiveX controls are frequently used in
HTML pages. The <OBJECT> tag is used to identify the con-
trol to the browser. In addition, several attributes are used for
this tag to help the browser display the proper ActiveX con-
trol to the client:

CLASSID: CLSID registered to the ActiveX control
CODEBASE: URL used by the browser to download the
control to the client

For more information on this tag, see the HTML working
draft at http://www.w3.org/pub/WWW/TR/-
WD-object.html.

Version control. If you deploy your ActiveX control with ver-
sion information enabled, the browser will automatically
detect whether it needs to update the control. The syntax of
the HTML to take advantage of version control is to append
the version number to the CODEBASE attribute. For example,
the following HTML code will only download the control if
the version number of the control is later than 1.1:

<OBJECT

CLASSID="clsid:7FD22F02-C0E1-11D0-9BB9-00A024604D21"

CODEBASE=

"http://dmiser.comps.com/calendarx.ocx#version=1,1,0,0"

>

Once the ActiveX control is deployed to a client, there will be
two glaring features that need to be addressed:
1) How to use property names in HTML
2) Safety warnings when using the ActiveX control in

HTML

Assigning property names. Delphi-created ActiveX controls
implement the saving and restoring of property values
through a standard persistence model. This provides a way for
the ActiveX control to tell others about its properties. For
example, the HTML listing in Figure 3 is the result of adding
a Delphi-created ActiveX control to an HTML page using
Microsoft ActiveX Control Pad.

http://www.borland.com
http://www.borland.com
http://www.w3.org/pub/WWW/TR/WD-object.html
http://www.w3.org/pub/WWW/TR/WD-object.html
http://www.verisign.com
http://www.microsoft.com/activex
http://www.microsoft.com/activex

TCalendarX = class(TActiveXControl, ICalendarX,
IPersistPropertyBag)

function IPersistPropertyBag.Load =

PersistPropertyBagLoad;

function IPersistPropertyBag.Save =

PersistPropertyBagSave;

function PersistPropertyBagLoad(

const pPropBag: IPropertyBag;

const pErrorLog: IErrorLog): HResult; stdcall;
function PersistPropertyBagSave(

const pPropBag: IPropertyBag; ClearDirty: BOOL;

fSaveAllProperties: BOOL): HResult; stdcall;
end;

Figure 4: Implementation of TCalendarX.IPersistPropertyBag.

Informant SpotlightInformant Spotlight

function TCalendarX.PersistPropertyBagSave(

const pPropBag: IPropertyBag; fClearDirty: BOOL;

fSaveAllProperties: BOOL): HResult; stdcall;
begin

PutPropInBag(pPropBag, 'Color', FDelphiControl.Color);

Result := S_OK;

end;

Figure 5: The IPersistPropertyBag.Save function.

<OBJECT ID="CalendarX1" WIDTH=320 HEIGHT=120

CLASSID="CLSID:7FD22F05-C0E1-11D0-9BB9-00A024604D21">

<PARAM NAME="BorderStyle" VALUE="1">

<PARAM NAME="CalendarDate" VALUE="5/29/97">

<PARAM NAME="Color" VALUE="-2147483643">

<PARAM NAME="Ctl3d" VALUE="-1">

<PARAM NAME="Cursor" VALUE="0">

<PARAM NAME="Day" VALUE="29">

<PARAM NAME="Enabled" VALUE="-1">

<PARAM NAME="FontName" VALUE="0">

<PARAM NAME="FontSize" VALUE="8">

<PARAM NAME="GridLineWidth" VALUE="3">

<PARAM NAME="Month" VALUE="5">

<PARAM NAME="ParentColor" VALUE="0">

<PARAM NAME="ReadOnly" VALUE="0">

<PARAM NAME="StartOfWeek" VALUE="0">

<PARAM NAME="UseCurrentDate" VALUE="-1">

<PARAM NAME="Visible" VALUE="-1">

<PARAM NAME="Year" VALUE="1997">

</OBJECT>

Figure 6: An <OBJECT> tag with IPersistPropertyBag implemented.

gure 7: The error displayed when a control is not marked safe
r scripting.
All the properties are set in the DATA element of this tag;
however, there is no easy way to look at this data to deter-
mine what the value of a given property is. In addition, by
using this method, the ActiveX control is more difficult to
control in an HTML scripting environment, such as
VBScript or JavaScript.

Microsoft defined the IPersistPropertyBag interface to turn
the unreadable data into human-readable properties. To
implement this interface, we simply need to add the two key
methods, Load and Save, to our existing ActiveX implemen-
tation. However, because the IPersistPropertyBag interface
already defines these methods, we must use Delphi’s method
resolution clauses to make our implementation work (see
Figure 4). For more information on this topic, look up
“Method resolution clauses” in Delphi’s online Help.

The IPersistPropertyBag interface referenced in the Load and
Save methods is the interface responsible for reading and
writing individual properties. You can find the helper rou-

Fi
fo
13 March 1998 Delphi Informant
tines ReadPropFromBag and PutPropInBag in \Delphi
3\SOURCE\RTL\SYS\comobj.pas. These procedures make it
easy to implement an IPersistPropertyBag interface for any
ActiveX control (see Figure 5).

Each item you add to the property bag in this function will
show up as a <PARAM> for the <OBJECT> tag. This provides
another level of HTML interactivity by allowing the use of
these properties in an HTML script (see Figure 6).

Automating persistence. We can borrow some logic to
implement this interface in a more generic manner by look-
ing at the demonstration application Pbag.dpr found in the
\Delphi 3\Demos\Activex\Propbag directory. This demon-
stration was included in the Delphi 3.01 update. In it, the
IPersistPropertyBag interface reads and writes the properties of
the control using RTTI (Run-Time Type Information).
Using this method ensures we won’t forget any properties
that need to be streamed.

It would be nice to use Borland’s implementation of
IPersistPropertyBag in all our controls. However, because COM
only allows interface inheritance, we have but two options:
1) Place the common code in a separate unit and implement

the interface for every ActiveX control that requires the
IPersistPropertyBag interface.

2) Create a new component derived from TActiveXControl
that implements the IPersistPropertyBag interface. By
doing this, all that must be changed is the inheritance of
your new ActiveX control from TActiveXControl to
TActiveXPropBag. This will allow your control to auto-
matically receive the IPersistPropertyBag implementation.

By descending from Delphi’s object reference, as opposed
to COM’s interface reference, we can achieve implementa-
tion inheritance.

Marking the ActiveX control as safe. When using an
ActiveX control in a script, Microsoft Internet Explorer (IE)
will check if the control can be safely scripted. If the control
is not deemed safe, a warning message will be displayed (see
Figure 7). By default, any control in a script will generate
this warning. According to the ActiveX SDK documenta-

Figure 8: Regedit displaying a safe control.

Figure 9: Setting run parameters to debug Personal Web Server.

Informant Spotlight
tion, there are three ways to suppress this warning message:
1) Turn off the security checking option for all scripts in IE.
2) Register the control as “safe for scripting” in the Windows

registry.
3) Implement the IObjectSafety interface.

Let’s examine the implications of each scenario.

Marking all controls as “safe for scripting” in IE isn’t a very
secure way to stop these messages from occurring. Some con-
trols might really be unsafe for scripting, and the user should
be warned about those instances. Implementing the
IObjectSafety interface is overkill for most ActiveX controls, as
a control is usually either safe or unsafe in its entirety.
Therefore, let’s concentrate on the second option — marking
the control as safe in the registry.

IE will check for the existence of two specific registry
entries for every control that is placed in a script (see Figure
8). If these entries exist, IE knows the author has marked
the control as safe, and will not display a warning. The two
registry entries are CATID_SafeForScripting and
CATID_SafeForInitializing. The entries are special because they
are defined as Category IDs. A Category ID is created to group
components into a particular category. To belong to these cate-
gories, the author of the control must believe the control will
not harm your system — no matter how the ActiveX control is
used in the script.

TActiveXControlFactory is the class factory responsible for
creating and registering ActiveX controls. In this class fac-
tory, there is a method called UpdateRegistry that maintains
registry settings for an ActiveX control. This seems like a
logical place to add the registry entries that will mark this
control as safe. Creating our class factory is as easy as
descending the TActiveXControlFactory class and manipu-
lating the registry settings in the overridden UpdateRegistry
method:
14 March 1998 Delphi Informant
TActiveXSafeFactory = class(TActiveXControlFactory)
procedure UpdateRegistry(Register: Boolean); override;

end;

After implementing this class, change the
TActiveXControlFactory.Create statement in the initialization
section of the project to TActiveXSafeFactory.Create. Then,
every time the control gets registered or unregistered, the
registry settings that belong to the control will be automat-
ically updated as well.

Testing ActiveX Controls
DLL debugging. Previous versions of Delphi required you to buy
Borland’s add-on package, Turbo Debugger for Windows
(TDW), to debug DLLs. Delphi 3 allows you to debug the cur-
rently loaded DLL inside the Delphi IDE. To accomplish this,
you need to open the DLL project file, then specify an .EXE that
will use this DLL. This is known as the host application. Select
Run | Parameters to bring up a dialog box where you can specify a
host application and any command-line criteria for that applica-
tion. Select Run | Run to start the host application. If you have a
breakpoint set in the DLL source files, Delphi will stop execution
of the host application and pass control to the Delphi IDE,
where you can evaluate variables and step through code.

Remember that an ActiveX control is nothing more than a
DLL. IE is an application that uses these special DLLs.
Therefore, we can use the debugging technique previously
described to debug our ActiveX controls.

Figure 9 shows the settings needed to debug the CalendarX
project using IE as the host application. Place a breakpoint in
the InitializeControl method in the unit CalImpl.pas. After
modifying the run parameters for the project, execute the Run

| Run command to launch IE. When the ActiveX control is
loaded, the Delphi IDE will regain focus, and you can use the
integrated debugger the same way you always have. To stop
the debugging session, exit IE.

Conclusion
These two articles have covered a lot of ground in the ActiveX
arena. However, even this lengthy treatment only scratches the
surface of things that can be done with this impressive compo-
nent technology. To further understand ActiveX, read the
ActiveX SDK documentation; it’s a price well worth paying as
the line blurs between Delphi and ActiveX components. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\MAR\DI9803DM.

Dan Miser is a software developer residing in Southern California with his wife
and daughter. He has been a Borland Certified Client/Server Developer since
1996, and is a frequent contributor to Delphi Informant. You can contact him
at http://www.iinet.com/users/dmiser.

http://www.iinet.com/users/dmiser

In Development
Delphi 1, 2, 3 / Soundex

By Rod Stephens

0 A, E, I, O, U, H, W, Y
1 B, F, P, V
2 C, G, J, K, Q, S, X, Z
3 D, T
4 L
5 M, N
6 R

Figure 1: US Census Bureau
soundex character encoding
key.

15 March 1998 Delphi Informant
Sounds Gud to Me
Soundex Encoding in Delphi

When you give your name at a restaurant, it doesn’t matter whether the
host spells it correctly. As long as the name can be pronounced to tell you

when your table is ready, it can be spelled any number of ways. In a large data-
base of names, however, spelling is critical. If you tell customer support that your
name is MacCauslin, it matters a great deal whether they type “MacCauslun,”
“McCawslin,” or “Mack Awzlin.” If the database is large, finding the correct
record by trial-and-error may be difficult. Even seemingly ordinary names like
Smith can have many different spellings: Smith, Smithe, Smyth, Smythe, etc.
This problem is common in large name-
database programs such as customer-support
hotlines, company phone directories, and
census-data files. Manually searching for a
record slows the operator, and increases the
length of the call. Eventually the operator
may need to ask the customer for the correct
spelling, further delaying the process — and
possibly annoying the customer.

This article describes soundex, a method for
encoding names based on how they sound,
rather than how they are spelled. Adding
soundex to a database application can make
record retrieval faster and less frustrating for
both the operator and the customer.

A Sound Beginning
Soundex methods come in several variations.
The United States Census uses one of the
simplest. The census represents a name using
a letter followed by three numbers. For
example, STEPHENS is represented by
S315. The rules for creating a census-style
soundex encoding are:
1) Remove vowels and H, W, and Y, except

as the first letter.
2) Encode the character according to the

key in Figure 1.
3) Remove adjacent duplicate digits. For

example, change 552331 to 5231.
4) The encoding is the first letter followed

by the second, third, and fourth
numeric codes.
For example, suppose you want to encode
the name STEPHENS. In step 1 you remove
the vowels, along with H, W, and Y, to get
STPNS. In step 2 you encode the letters to
get 23152. This value has no adjacent dupli-
cates, so step 3 leaves the result unchanged.
The final code is S315.

Compare this to the encoding of the other
common spelling of this name: STEVENS.
Step 1 changes the name to STVNS.
Encoding the letters in step 2 yields 23152.
This contains no adjacent duplicates, so step
3 has no effect. The final encoding is S315
— the same value as the encoding for
STEPHENS. This is the important property
of soundex encodings: Names that sound
similar have similar encodings.

For another example, consider the name
MacCauslin. Removing the vowels in step 1
leaves MCCSLN. Encoding the remaining
letters in step 2 yields 522245. Removing
duplicates in step 3 leaves 5245, so the final
soundex encoding is M245. You can verify
that this is the same as the encodings for
MacCauslun, McCawslin, and Mack Awzlin.

Figure 2 shows a Delphi function that
returns a census-style soundex encoding for
a string. The Soundex program available on
this month’s Companion Disk uses this
code to create census-style soundex encod-
ings (see end of article for download

In Development

// Calculate a numeric soundex encoding.
function NumericSoundex(in_str: string) : Smallint;
var
value: Integer;

begin
// Calculate the normal soundex encoding.
in_str := Soundex(in_str);

// Convert this to a numeric value.
value := (Ord(in_str[1]) - Ord('A')) * 1000;

if (Length(in_str) > 1) then
value := value + StrToInt(Copy(in_str, 2,

Length(in_str) - 1));

NumericSoundex := value;

end;

Figure 3: Converting a string encoding into a numeric encoding.
details). The program also demonstrates other techniques
described later in this article. Enter a string, then click the
Encode button to make the program display the different
kinds of encodings.

Now What?
Once you know how to create soundex encodings, you can
use them in database applications. Start by computing
soundex encodings for each record, and storing them in the
16 March 1998 Delphi Informant
database. If you use a relational database, make the soundex
encoding a key, because you’ll often search for the encoding.

To find a name, the program searches the database for the
name’s soundex code. If it finds more than one match, the pro-
gram can present a list of names for the user to choose from.
The program could even arrange the names so the most likely
match comes first. For example, suppose the user enters
STEVENS, ROD, and the best matches are STEVENS, MIKE
and STEPHENS, ROD. If the program checks the soundex
encoding of the first names as well as the last names, it can
conclude that the second entry is probably the right one.

Soundex is useful for tasks other than name finding. For
example, it’s sometimes used in address-matching software.
Given a street address that may have been misspelled, the pro-
gram can use soundex to find possible correct street names.
This type of software is usually customized, so it knows about
the most common mistakes in street addressing. For example,
MAIN AVE N and N MAIN AVE may be the same street.

Soundex is also used in some spelling checkers. If the user
incorrectly types CRL, the program can ask if this should be
CARL, CAROL, CURL, CORAL, or CHORAL, because
these words have soundex codes similar to the code for CRL.

Optimization
Census-style soundex codes are four-character strings. You can
make operations faster using integer codes instead of strings. You
can convert a soundex encoding into an integer by using the
code shown in Figure 3, which converts a soundex string encod-
ing into a numeric code. The example program named Soundex
uses this function to display numeric soundex encodings.

Soundex Variations
An advantage of the census-style soundex is that every name
is represented by a four-character string that a program can
easily translate into an integer. The small number of possible
codes makes it likely that a word’s soundex encoding will
match the encoding of the correct spelling. In other words,
when the user guesses how to spell a name, the program will
probably find the correct record.

On the other hand, the program will also probably find a lot of
incorrect records. A letter followed by three digits between 1
// Calculate a normal soundex encoding.
function Soundex(in_str: string) : string;
var

no_vowels, coded, out_str: string;
ch: Char;

i : Integer;

begin
// Make upper case; remove leading and trailing spaces.
in_str := Trim(UpperCase(in_str));

// Remove vowels, spaces, H, W, and Y, except as the
// first character.
no_vowels := in_str[1];

for i := 2 to Length(in_str) do begin
ch := in_str[i];

case ch of
'A', 'E', 'I', 'O', 'U', ' ', 'H', 'W', 'Y':

; // Do nothing.
else

no_vowels := no_vowels + ch;

end;
end;

// Encode the characters.
for i := 1 to Length(no_vowels) do begin

ch := no_vowels[i];

case ch of
'B', 'F', 'P', 'V':

ch := '1';

'C', 'G', 'J', 'K', 'Q', 'S', 'X', 'Z':

ch := '2';

'D', 'T':

ch := '3';

'L':

ch := '4';

'M', 'N':

ch := '5';

'R':

ch := '6';

else // Vowels, H, W, and Y as the first letter.
ch := '0';

end; // End case ch.
coded := coded + ch;

end; // End for i := 1 to Length(no_vowels)

// Use the first letter.
out_str := no_vowels[1];

// Find three non-repeating codes.
for i := 2 to Length(no_vowels) do begin

// Look for a non-repeating code.
if (coded[i] <> coded[i - 1]) then

begin
// This one works.
out_str := out_str + coded[i];

if (Length(out_str) >= 4) then
Break;

end;
end;

Soundex := out_str;

end;

Figure 2: Converting text into census-style soundex.

In Development
and 6 can generate only 26 * 6 * 6 * 6, or 5,616 possible codes.
If you have a large database, many entries must map to the
same code. For example, if your database has 600,000 records,
each code will correspond to more than 100 records (on the
average). Because names are not evenly distributed (e.g. more
names start with S than with Q), most codes correspond to
even more names. Finding the correct name in a list of more
than 100 can be hard.

Short codes also mean the system cannot distinguish between
long names that start the same way. For example, STEFFAN
and STEVENOWSKI both have codes S513 — even though
only their beginnings sound alike. The program will group
these names together, while a human can easily tell they are
not different spellings of the same name.

Even for shorter names, this scheme’s simplistic method for giv-
ing similar letters the same code sometimes makes it group
names that do not sound alike. For instance, MAGEE and
MEESEK both have code M2, though they sound very different.

For similar reasons, this scheme sometimes assigns very differ-
ent encodings for names that sound similar. For example, the
code for PHISHMAN is P25, while the code for FISHMAN
is F25. It would be difficult for a program to realize that P25
and F25 represented names with the same pronunciation.

Other versions of the soundex system address these issues.
They replace common pairs of letters such as PH with
shorter equivalents such as F. Some of these variations use
more than four characters to encode a name. They also use
the letters themselves, instead of numeric codes. The steps
for generating one soundex variation are:
1) Convert CHR to CR, PH to F, and Z to S.
2) Remove adjacent duplicates.
3) Remove vowels, except the first letter.

(It’s been suggested that these rules were used to name the
UNIX commands. In many cases, the truth is much stranger.)

Following these rules, the code for STEFFAN is STFN, and
the code for STEVENOWSKI is STVNWSK. These codes are
still somewhat similar — because the words themselves are sim-
ilar — but are different enough for a program to tell them
apart. The new code for MAGEE is MG, and the new code for
MEESEK is MSK. These new values correctly distinguish
between the two. Finally, PHISHMAN and FISHMAN now
both encode to FSHMN. The names sound alike, and now
have the same code.

Figure 4 shows Delphi code that generates this new kind of
soundex encoding. The Soundex example program uses this
code to display extended encodings.

Other Enhancements
Other soundex algorithms use different rules to transform
spellings into codes, based on the way they probably sound.
Some change PF into F when it occurs at the beginning of a
17 March 1998 Delphi Informant
word, so PFEIFER, FIFER, and PHEIFER all have the same
code. Others replace X with KS, so SOX and SOCKS have
the same code: SKS.

The metaphone algorithm uses a series of rules to create pho-
netic codes for English words. The rules are quite complicat-
ed. For example, the letter C is converted into:

Nothing (i.e. it’s silent) if it occurs in SCI (conscience),
SCE (ascent), or SCY (scythe).
X, to represent the “sh” sound if it occurs in CIA (associ-
ate) or CH (luncheon).
// Calculate an extended soundex encoding.
function ExtendedSoundex(in_str : string) : string;

// Replace instances of fr_str with to_str in str.
procedure ReplaceString(var str : string;
fr_str, to_str : string);

var
fr_len, i : Integer;

begin
fr_len := Length(fr_str);

i := Pos(fr_str, str);

while (i > 0) do begin
str := Copy(str, 1, i - 1) + to_str +

Copy(str, i + fr_len,

Length(str) - i - fr_len + 1);

i := Pos(fr_str, str);

end;
end;

var
no_vowels : string;
ch, last_ch : Char;

i : Integer;

begin
// Make upper case and remove
// leading and trailing spaces.
in_str := Trim(UpperCase(in_str));

// Remove internal spaces.
ReplaceString(in_str, ' ', '');

// Convert CHR to CR.
ReplaceString(in_str, 'CHR', 'CR');

// Convert PH to F.
ReplaceString(in_str, 'PH', 'F');

// Convert Z to S.
ReplaceString(in_str, 'Z', 'S');

// Remove vowels and repeats.
last_ch := in_str[1]; // The last character used.
no_vowels := last_ch;

for i := 2 to Length(in_str) do begin
ch := in_str[i];

case ch of
'A', 'E', 'I', 'O', 'U':

; // Do nothing.
else
// Skip it if it's a duplicate.
if (ch <> last_ch) then
begin
no_vowels := no_vowels + ch;

last_ch := ch;

end;
end;

end;

ExtendedSoundex := no_vowels;

end;

Figure 4: An extended soundex algorithm.

In Development
S if it occurs in CI (voicing), CE (forceful), or CY (cyclone).
K otherwise (preschool).

Because metaphone is optimized for English spellings, it may
not work well for all applications. In particular, it may have
trouble with foreign names. You can find a more detailed
description of metaphone, and Delphi source code for a
metaphone library, at http://www.intellex.net/~wcs/delphi/-
program.html.

Save Your Fingers
Adding soundex searches to an application can make finding
records faster and less frustrating. Once users become com-
fortable with soundex, they will discover many shortcuts.
They may start skipping vowels, typing only the beginning
of a name, and even entering the beginnings of extended
soundex codes. When a customer says “MALLACHIO,” the
user can enter “MALCH,” and pick the correct entry from a
short list. After a while, users may wonder how they avoided
wearing their fingers to the bone typing all those extra char-
acters. Of crs y shldnt cry ths id t fr. (“Of course, you
shouldn’t carry this idea too far.”) ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\MAR\DI9803RS.

Rod Stephens is the author of several books, including Visual Basic Algorithms
from John Wiley & Sons, Inc. He writes an algorithm column in Visual Basic
Developer; some of the material presented here has appeared there in Visual
Basic form. Reach him at RodStephens@compuserve.com or see what else he’s
doing at http://www.wiley.com/compbooks/stephens.
18 March 1998 Delphi Informant

http://www.intellex.net/~wcs/delphi/program.html
http://www.intellex.net/~wcs/delphi/program.html
http://www.wiley.com/compbooks/stephens

DBNavigator
Delphi 3

By Cary Jensen, Ph.D.

Figure 1: You co
of the Environme

19 March 1998 Delphi Informant
More Code Editor Tricks
Getting the Most from Delphi’s Native Editor

Pop quiz: Does Delphi’s Code Editor support keystroke recording and play-
back? If you answered “No,” you’re missing at least one feature that can

save you a great deal of effort. The fact is, very few Delphi developers use the
Code Editor to its full capacity.
Last month’s “DBNavigator” contained an in-
depth look at Code Insight, but there’s a lot
more to coding productivity than that offered
by Code Insight. Delphi’s editor has a wealth
of features; so many, in fact, that I cannot fit
a detailed discussion of them all into this arti-
cle. Instead, I’m going to highlight some of
my favorite techniques, leaving you to discov-
er the remaining capabilities.

General Editor Issues
Before we start to explore some of its fea-
tures, a general comment about Delphi’s
Code Editor is in order. The editor has four
keystroke mappings. These mappings —
ntrol keystroke mapping using the Display page
nt Options dialog box.
Default, Classic, Brief, and Epsilon — define
which features are available, and how you
access them. The Default keystroke mapping
provides keystroke mapping that is CUA-
compliant. Most Windows applications use
these keystrokes, making this setting a good
choice if you don’t already have a preference.

The other mappings are provided to permit
you to customize the editor to emulate an
editor you’re already familiar with. For exam-
ple, the Classic keystroke mapping emulates
the editor-key combinations from Borland
Pascal. Likewise, Brief and Epsilon modes
emulate the keystrokes of those editors.

You select which editor emulation you
want from the Keystroke mapping list box
on the Display page of the Environment
Options dialog box (see Figure 1). You
can display this dialog box by selecting
Tools | Environment Options. You can
further configure the editor using the
Editor SpeedSetting combo box on the
Editor page.

The techniques in this article refer to Default
keystroke mapping key combinations, so if you
aren’t using the Default setting, the keystrokes
may not work for you. In that case, use
Delphi’s online Help to find the appropriate
keystroke combinations for a particular feature.
In addition, a given keyboard mapping may
provide several alternative keystroke combina-
tions for accessing a particular feature. Again,
refer to the online Help for this information.

Figure 2: Use this hypertext window to display help for the catego
board mappings you’re interested in.

DBNavigator
Getting Help
There are several ways to access Delphi’s Help pages regarding
keyboard mappings. The easiest is to search on “keyboard short-
cuts” in online Help. The Help system will display the Topics
Found dialog box; select About keyboard shortcuts and press
R. Then, from the displayed Help page, select the name of
the keyboard emulation you’ve selected. This will result in the
display of a hypertext window like the one shown in Figure 2,
containing links to the Help pages for each category of editor
operation. For example, if you want to view the keystrokes asso-
ciated with cutting, copying, and pasting, select Clipboard control.

Key Macro Recording
A key macro is a series of one or more keystrokes you can record
and play back repeatedly. The keystrokes that you record as part
of your macro can contain simple characters from the keyboard,
but can also include navigation keys, and even keystroke combi-
nations. As a result, it’s possible to record a sequence of key-
strokes that can quickly and efficiently apply a wide range of
changes to your code.

To begin recording a key macro, press CSR. The word
Recording appears in the third panel of the Code Editor’s status
bar. At that point, each key press or key combination you enter is
recorded. To conclude your recording, press CSR
again.

You play back the keystrokes in exactly the same order in
which they were recorded by pressing CSP. You
can play back the same key macro as many times as you
like. Obviously, since key macros contain only exact key-
strokes and key combinations, your macros will be effective
only when they contain sequences that can be repeated suc-
cessfully.

Block Indent and Unindent
Indentation plays an important role in making your code easi-
er to read and maintain. For example, most Delphi developers
indent the then clause of an if statement:

if BooleanCondition then
DoThisandThat;

Furthermore, when two or more statements are condition-
al, such as when a begin..end block is used to group a
series of statements to be executed conditionally, the state-
20 March 1998 Delphi Informant
ments within the begin..end are traditionally
indented to the same degree, providing addi-
tional visual cues of their grouping.

Block indenting and unindenting refers to the
process of changing the indentation of two or
more lines of code simultaneously. This feature
is particularly valuable when you’re introducing a
new control structure to an existing section of
code. For example, you might have originally
written your code to execute a sequence of state-
ments, but now you want to make that sequence
conditional by introducing an if statement.

Making the sequence of statements conditional generally
means you will also want to further indent these statements
(to maintain a consistent indentation). While this can be
accomplished by indenting one line at a time (or by recording
a key macro that indents one line and then moves to the next
line, and then plays this macro back repeatedly), block inden-
tation permits you to indent all of the conditional statements
in a single step.

To perform block indentation, first highlight the lines that
you want to indent. In the Default keystroke mapping, this
can be accomplished by holding down S, while using
the navigation (arrow) keys to highlight the rows to be
indented. Dragging the mouse to highlight the desired rows
also accomplishes this effect. Once the lines that you want to
indent are highlighted, press CSI to indent. To
block unindent, highlight the rows that you want to unin-
dent, and press CSU. The number of columns that
the selected text is moved depends on the Block indent setting
on the Editor page of the Environment Options dialog box. I
prefer to set Block indent to 1, to get the greatest control.

Using Bookmarks
A bookmark is a setting that permits you to return to a par-
ticular line of code in a unit (or any other file opened in
the editor, for that matter). Bookmarks are ideal when
you’re working on a large unit, and you want to quickly
move between two or more rows within that unit.

You can set up to 10 bookmarks in each file opened in
the Code Editor. These bookmarks are labeled 0 through
9, and each bookmark can appear only once in a given
unit. To set a bookmark, hold down CS and press
a single-digit key, i.e. 0 to 9. The bookmark is identi-
fied in the left-hand gutter of the editor by a glyph that
displays the specified digit. For example, the code shown
in Figure 3 contains two bookmarks, one labeled 0 and
the other labeled 5.

To move to a particular bookmark, press C plus the digit
identifying the bookmark, e.g. C5. To remove a book-
mark, move to the line for that bookmark and press
CS plus the digit identifying the bookmark.
Alternatively, if you attempt to place the same bookmark in a
new location within the same unit, the existing bookmark is
removed before the new bookmark is placed.

ry of key-

Figure 3: Bookmarks appear in the left-hand gutter of the editor.
example, the bookmarks are in close proximity. However, in most c
bookmarks are in distant parts of a unit.

DBNavigator

m Unit1 in a new project, you can quickly locate the Form1 vari-
ion by pressing CE, typing Form1, and then pressing 3.
Bookmarks are temporary; they are lost when you close the
file in which they are set.

Incremental Search
Delphi provides a wide variety of search options. Of these, the
least used, though arguably the most interesting, is the incre-
mental search. What makes the incremental search so nice is
that it’s quite easy to use.

When you initiate an incremental search, Delphi monitors
your keystrokes, and positions your cursor at the first char-
acter sequence within the unit that matches the characters
you have entered. You initiate an incremental search by
pressing CE, or by selecting Search | Incremental Search
from the menu. You conclude an incremental search by
pressing E, or by navigating from the located string.

While you are performing an incremental search, Delphi
displays Searching for: in the status bar. As you type the
characters of your search string, these too are
displayed in the status bar. If Delphi finds a
match to your entered string, but not what
you’re looking for, you can press 3 to ask
Delphi to search for the next occurrence of
the entered string.

The use of an incremental search is easier to
demonstrate than to describe. Start by creating a
new project in Delphi. Display Unit1 in the edi-
tor, and press CE. Assuming that you want to
find the string “Form1,” begin typing Form1.
When you type f, Delphi highlights the “f” in
interface. Next, press o. Delphi now moves the
highlighting to the first instance of “fo,” which it
finds in the string “Forms” that appears in the
interface uses clause. Now enter the characters
rm1. At this point, the highlighting will be on
the word “TForm1” in the class declaration for the
form, since this is the first instance of the string

Figure 4: Fro
able declarat
21 March 1998 Delphi Informant
“Form1.” Now press 3; the highlighting will advance
to the variable declaration “Form1,” as shown in Figure 4.
If you were to press 3 once more, highlighting will
move to “TForm1” in the type portion of the variable
declaration. Pressing 3 one last time will display a dia-
log box indicating that it finds no more instances of the
string “Form1” within that unit.

An incremental search always begins from the current
position of the cursor, and performs a forward search.

Find Matching Delimiters
Like most programming languages, Object Pascal
makes extensive use of delimiters to organize code.
For example, the parameters of a function call appear
within parentheses, the contents of a multi-line com-
ment appear within a pair of matching braces, and
the members of a set are enclosed in a matching pair
of brackets.

The Find matching delimiter feature of the Code Editor per-
mits you to quickly locate the parenthesis, brace, or bracket
that corresponds to one you have chosen. For example, if you
place your cursor to the right of an open parenthesis, the Find
matching delimiter command will move your cursor to the
right of the corresponding close parenthesis. This feature is
particularly valuable when working with nested matching
delimiters, such as function calls that serve as parameters to
other function calls. Using Find matching delimiter can help
you verify that your parentheses are placed correctly.

To find the matching close delimiter, place your cursor to the
right of the open delimiter and press CQ]. Likewise, to
find the matching open delimiter, place your cursor to the
right of the close delimiter and press CQ[.

Column Operations
Typically, block operations are based on rows. For example,
earlier in this article you learned how to indent and unin-

In this
ases

Figure 5: By selecting a column block, it’s possible to delete the string “New”
from multiple lines, quickly converting these constant declarations.

DBNavigator
dent one or more rows with a single key combination. The
highlighted rows in that example constituted a block. (It
should be noted that there are a great many block opera-
tions, including deletion, converting the case of its charac-
ters to upper case or lower case, and so forth.)

In addition to permitting you to create blocks based on
rows, Delphi’s editor also provides for column-based
blocks. These blocks, which are always rectangular in
shape, permit you to perform block operations on one or
more columns. For example, imagine that you have two or
more lines where you want to delete only the character
appearing in the third, fourth, and fifth rows. You can eas-
ily do this by creating a column block that includes only
the third through fifth columns of the two or more rows.
Once defined, these characters can be deleted by pressing
D (or by cutting using CX, or whatever delete key
combination is supported by your keyboard mapping).

You create column-based blocks by first marking the row
and column in which you want the block to begin by
pressing COC. You then hold down S while
you navigate to the row and column where you want the
block to end. The column block appears as a highlighted
rectangle. Once the block is highlighted, you can perform
any block operation, such as copying the block to the
Clipboard, or deleting it. Figure 5 depicts a code segment
where a column block is being used to highlight “New”
on multiple lines, and then delete them with a single
delete operation.

Conclusion
The Delphi Code Editor provides a wealth of features that
support your code-writing activities. This article has dis-
cussed only a few of these features. By taking a few min-
utes to read Delphi’s online Help, you are sure to learn
additional tricks that can improve your productivity. ∆
22 March 1998 Delphi Informant
Cary Jensen is President of Jensen Data Systems, Inc., a
Houston-based database development company. He is
author of more than a dozen books, including Delphi in
Depth [Osborne McGraw-Hill, 1996]. He is also a
Contributing Editor of Delphi Informant, and was a
member of the Delphi Advisory Board for the 1997
Borland Developers Conference. For information concern-
ing Jensen Data Systems’ Delphi consulting and training
services, visit the Jensen Data Systems Web site at
http://idt.net/~jdsi. You can also reach Jensen Data
Systems at (281) 359-3311, or via e-mail at
cjensen@compuserve.com.

http://idt.net/~jdsi

23 March 1998 Delphi Informant

Columns & Rows
Delphi 3 / ODBMS / POET

By Chu Moy
Developing Object Databases
A RADical Approach to Business Applications

Recent trends in application development are highlighting the limitations of
relational database technology. Business applications now routinely tap into

complex data containing several levels of relationships and a multitude of data
types, such as multimedia data. At the same time, developers are modeling
applications using an object-based paradigm. Relational databases are not
optimized for either of these situations. RDBMSes suffer significant performance
degradation with complex data, and developers must spend considerable time
writing code to map object data to relational tables. Object adapters to rela-
tional databases must still contend with the underlying relational foundation.
The emerging technology of pure object
databases promises dramatic improvements
in speed and development time. Some
benchmarks have clocked ODBMSes per-
forming up to 2,000 times faster than their
relational counterparts. Once the exclusive
province of C++ and Smalltalk programmers,
ODBMSes have lacked connectivity options
for the RAD market. ODBMS vendors have
addressed these issues by releasing GUI-
based development tools and ActiveX and
ODBC interfaces to their products.

Delphi, with its fully object-oriented architec-
ture and support for ActiveX type libraries (in
Delphi 3), is an excellent language for RAD
object database development. This article exam-
ines methods and tools for Delphi developers to
design and access object databases. The code
examples use POET ODBMS (http://www.-
poet.com). However, other ODBMSes, such as
Object Design’s ObjectStore (http://www.-
odi.com), and Computer Associates’ Jasmine
(http://www.cai.com), have similar connec-
tivity options.

The Object-Database Schema
Whereas relational databases store data in
fixed tabular formats of rows and columns,
the structure of object databases is orga-
nized around the complexity of the data
itself. An object schema can reflect real-
world processes through inheritance, poly-
morphism, and encapsulation. Objects
have unique characteristics — such as iden-
tity and behavior — that have no equiva-
lents in traditional relational theory.
Object-relational adapters add support for
multimedia data types to RDBMSes, and
may also provide an object-like program-
ming interface; but the database engine still
operates with tables. Object databases
extend the OOP paradigm from the pro-
gramming language to the database engine.

In an ODBMS, data and procedures are
grouped together as object properties and
methods. It’s possible to view object data-
bases in relational terms (see Figure 1), but
only at a superficial level. Broadly speaking,
the basic elements of an RDBMS have cor-
responding elements in an ODBMS. Thus,
a table named Employee may contain
records with columns such as Name,
Address, Empl_id, and Dept_id. An
Employee object is an instance of an
Employee class, and may have attributes
such as Name, Address, and Empl_id.

http://www.poet.com
http://www.poet.com
http://www.odi.com
http://www.odi.com
http://www.cai.com

Object Term Relational Comment
Term

Database Database Object databases store objects and their relationships, with support for encapsulation,
inheritance, and polymorphism. Relational databases store record data in two-
dimensional tables. Relationships between tables are constructed with queries.

Class/Extent Table Classes are templates for objects. A class can have definitions for attributes and
methods. Tables use a row-and-column structure to hold data. An extent is the set
of all objects of a particular class.

Object Record An object is an instance of a class. It encapsulates data and behavior. A record is
a row of column data.

Object ID Row ID (RID) OIDs and RIDs are system-generated values that uniquely identify an object in an
(OID) ODBMS, or a row in an RDBMS. However, traditional RDBMS theory does not

require RIDs; some RDBMSes do not create them.

Attribute / Column Object-data attributes can map to table columns. Object relationships can be
Relationship mapped as foreign-key values to columns.

Method Stored Methods are associated with objects, and have the capabilities of the
Procedure programming language. Stored procedures are precompiled SQL code.

Event Triggers An ODBMS will usually have an object-management mechanism that can trigger
Management the execution of methods based on the occurrence of object events. RDBMSes use

triggers to execute SQL procedures on the occurrence of data events.

Index Index Object indices are conceptually similar to relational indices. The ODMG ODL
includes syntax to specify multiple keys for a class.

Figure 1: Object-relational structure mappings.

Columns & Rows
Object schemas generally support two types of relation-
ships: inheritance and associations. Inheritance simplifies
schema design by reusing the design of the parent class. An
association is represented as a pointer to another object.
Thus, instead of a Dept_id attribute, an Employee object
would have a pointer to a Department object. In a relation-
al database, the relationship between the Employee and
Department tables would be constructed in a query that
uses Dept_id as a foreign key. An Employee object, however,
can find its associated Department object by going to the
referenced memory address. The improvement in response
time compared to an RDBMS is especially dramatic with
complex data.

There are two ways to create an object database:
Specify the persistent classes in a schema script and com-
pile the script into a database binary.
Use a GUI-based schema design tool.
interface SalesRep: Employee

(extent SalesReps)

{

void RequestSalaryIncrease();

relationship SalesManager Is_managed_by

inverse SalesManager::Manages;

};

interface SalesManager: Employee

(extent SalesManagers)

{

void DenyRaiseRequest();

void TerminateSalesRep();

relationship Set<SalesRep> Manages

inverse SalesRep::Is_managed_by;

};

Figure 2: Specifying inheritance and associations in an object
schema with ODL.

24 March 1998 Delphi Informant
The first may sometimes be more flexible. Those databases in
compliance with the Object Database Management Group
(ODMG) standard may support its Object Definition
Language (ODL) for defining schemas. Other products may
require the schema be defined according to programming lan-
guage syntax such as C++.

An ODL class declaration has two basic sections: the heading
and the body. The heading specifies the class inheritance, the
name of the extent (the set of all objects of that class), and
keys for indexing. The body lists the class attributes and
methods. A script for defining an Employee class using ODL
might appear as follows:

interface Employee

(extent employees

key (name, empl_id)):persistent

{

attribute String Name;

attribute String Address;

attribute Short Empl_id;

};

The ODL can specify two kinds of schema relationships:
inheritance and associations called traversal paths. Inheritance
simplifies schema design. A named traversal path is a desig-
nated relationship between classes. If the SalesManager and
SalesRep classes descend from the Employee class and are also
associated (e.g. SalesMangers supervise SalesReps), the ODL
allows the relationship to be defined from either, or both,
points of view (Figure 2). In the database, relationships are
physically represented as pointers to associated objects. In a
1:1 relationship, the source object will have a single reference
to its associated object. In a 1:n relationship, the source object
has a set of references to its associated objects.

Figure 3: With the PtRose add-on, Rational Rose Modeler 4.0 can
POET databases from class diagrams.

Figure 4: ObjectCast for Delphi, from CustomLink Software, is
RAD/ODBMS workbench that generates object databases and a
frameworks.

Figure 5: A sales ODBMS schema and its ODBC view.

25 March 1998 Delphi Informant

Columns & Rows
Large schema scripts in ODL or C++ are difficult
to maintain. GUI schema tools, such as PtRose
from POET Software (see Figure 3) and Blueprint
from Object Design, avoid the tedium and confu-
sion of scripting schemas by generating databases
from object models. Third-party tools, such as
ObjectCast from CustomLink Software (see
Figure 4), include code generation for RAD lan-
guages like Delphi.

Connecting Delphi Applications to
Object Databases
An ODBMS vendor may supply a Delphi “tight
binding” that integrates closely with the Delphi
IDE, but ActiveX and ODBC appear to be the
most popular interfaces for RAD development.
ActiveX interfaces tend to offer better performance
and greater functionality than ODBC, and appli-
cations can access and manipulate database objects
through ActiveX. ODBC is a relational technology
that’s been adapted to map object schemas to vir-
tual tables that can be queried with SQL. Usually,
the developer must write code to map ODBC
record sets to application objects.

However, the developer may choose ODBC because
the application doesn’t require high performance or
access to all ODBMS features. Usually, these situa-
tions involve connecting an RDBMS application to
ODBMS data, or the use of relational reporting
tools on an object database. There are more efficient
options for integrating ODBMS and RDBMS data,
but ODBC is convenient and familiar. A discussion
of ODBC is also a good way to introduce the topic
of query languages for object databases.

Open Database Connectivity. ODBC drivers for
object databases are just one option in a selection

of object-relational mapping technologies, but ODBC is cer-
tainly Delphi-compatible, whereas the others may not be. As
is true of ODBC drivers generally, ODBC drivers for object
databases are not all the same; they may translate ODBMS
structures differently. Some ODBC drivers use the SQL2
standard; others may have added object extensions to SQL,
like those in the forthcoming SQL3 standard or the ODMG’s
OQL (Object Query Language). Although these are different
standards, they have similarities because OQL is based on
SQL and SQL3 borrows from OQL.

ODBC views object databases as a series of tables, and returns
record sets which must be mapped to application objects. The
relationships between objects are broken. Derived tables sub-
stitute a foreign-key column (OID or object IDs) for each
relationship attribute. A SQL query can reconstruct the rela-
tionships with joins on the relationship keys.

The object schema of the simple sales database shown in
Figure 5 differs slightly from its ODBC view. Although the

 generate

 a
pplication

Figure 6: The Account_SID column in the result set of the ODBC que

Columns & Rows

Figure 7: Accessing objects in an ODBMS, via ActiveX Automation.

Columns & Rows
object schema has only three classes (SalesMgr, SalesRep, and
Account), the ODBC view shows four tables. One table,
SalesRep_Account, represents the one-to-many (1:n) rela-
tionship between SalesReps and Accounts. The SalesRep
object has an object set attribute named Accounts, which is
the set of all assigned accounts. The Account_SID column
preserves information about the order of the account
objects in the set (see Figure 6).

From the ODBC table view, the following SQL2 query
retrieves the name of the sales rep who has an account con-
tact named “Henry Ford”:

SELECT R.*

FROM SalesRep R, SalesRep_Account RA, Account A

WHERE R.SalesRep_OID = RA.SalesRep_OID

AND RA.Account = A.ACCOUNT_OID

AND A.Contact = "Henry Ford"

OQL and SQL3 queries navigate object trees by specifying
the traversal path, and have more compact and efficient
query syntax. An OQL query operates on object sets. Because
the SalesRep class has two sets (a SalesReps extent and an
Accounts set), an OQL query that traverses both sets must
specify them. The following OQL query is functionally iden-
tical to the previous SQL query:
26 March 1998 Delphi Informant
SELECT r

FROM r IN SalesReps, a IN r.Accounts

WHERE a.Contact = "Henry Ford"

Other object-relational mapping products create
object views on relational schemas. Not all are
Delphi-compatible. These high-performance
interfaces, such as DBConnect from Object
Design and SQL Object Factory from POET
Software, automatically map relational data to
application objects. They are designed to integrate
ODBMS and RDBMS schemas into a single
object model. Some relational adapters include an
ODBC driver as part of the package.

ActiveX interfaces. A native Delphi binding to an
object database would have the best performance
and most seamless integration between applica-
tion objects and database objects. ActiveX
Automation interfaces are more commonly avail-
able. Since Delphi 3 supports type libraries, appli-

cations can use vtable binding to
extract maximum performance
from ActiveX interfaces. Some
vendors also offer ActiveX con-
trols for drag-and-drop visual
programming.

Unlike a native binding, objects
retrieved from an automation
database are instantiated on the
server side. The controller applica-
tion receives COM pointers to
server objects, and doesn’t operate
directly on the objects. If the

application is only concerned with manipulating object attrib-
utes, the COM barrier isn’t an issue. If the controller applica-
tion must invoke object methods, the COM barrier is an issue
because method code runs on the client, not on the sever. The
solution is to encapsulate the COM object inside Delphi wrap-
pers to simulate native Delphi objects, which are subject to
inheritance and polymorphism (see Figure 7). The following
class declaration defines an Employee class that contains a
pointer to a database object:

PtEmployee = class
// For early binding, use IPOETApplicationObject.
PtObj: OleVariant;

procedure SetName(value: string);
function GetName: string;
procedure SetAddress(value: string);
function GetAddress: string;
procedure RequestSalaryIncrease; virtual;

end;

The Get/SetName and Get/SetAddress methods use the
COM object PtObj to access an Employee object in the
database, while the RequestSalaryIncrease method con-
tributes to the object behavior. When the application
instantiates a PtEmployee object, it initializes the object by
assigning the COM object to PtObj. PtObj already has its
own accessor methods, but defining separate Get/Set meth-

ry.

Figure 8: A simplified view of the POET Automation class hierarchy.

Columns & Rows

Figure 9: The sales-database schema for the sample application.

 many-to-many relationship between the SalesRep and Account
mple database is implemented with object-set attributes.
27 March 1998 Delphi Informant

ods helps to further conceal the true nature of the object’s
COM identity.

An application could only require one instance of a
PtEmployee object, because retrieving another object from the
database is only a matter of reassigning the COM object.
Since PtEmployee is a Delphi class, other Delphi classes can
inherit from it and implement polymorphism. For example, a
PtSalesRep class can inherit from PtEmployee and modify
PtEmployee’s method implementation:

PtSalesRep = class(PtEmployee)
function GetCurrentSales: Integer;

procedure MakeSale (value: Integer);

procedure RequestSalaryIncrease; override;
end;

Programming with an ActiveX Interface
The ODMG specification indicates that objects can be stored in
a database as named objects and/or extents. A named object con-
sists of a root object (which is assigned a name) and any associat-
ed objects. Once the root object is created, any objects referenced
by the root are automatically stored in the database. To retrieve
an object, an application first retrieves the root, then navigates
the object tree to reach the desired object. However, large num-
bers of named objects can make programming difficult, and slow
down the database. The alternative is to use extents.

Some ODBMSes automatically create
and maintain extents each time an object
is stored or removed from the database.
For those that support named objects,
extents can be simulated by creating
named objects that are collections or sets,
each containing objects from a single
class. The extent programming model
organizes objects to simplify access.

The POET Automation class hierarchy
(see Figure 8) illustrates the basic classes
of an ODBMS that uses extents. The
ApplicationObject class endows each object
with database functionality, such as the ability
to store and delete itself. Set constructs such

Figure 10: The
classes in the sa
as Extent and ApplicationObjectSet represent groups of objects.
Object sets are often used as object attributes for creating one-to-
many relationships between classes. The ApplicationObjectFactory
class is responsible for generating new database objects.
ODBMSes that support named objects will often have even
simpler class hierarchies.

The object schema of the sample application (see Figure 9)
shows how extents and object sets work together. In this
scenario, each SalesRep is assigned one SalesMgr, and is
responsible for several accounts. Each account can be owned
by several SalesReps. Each SalesMgr supervises several
SalesReps. The SalesRep class has a 1:1 relationship with the
SalesMgr class, and a 1:n relationship with the Account class.
The SalesMgr class has a 1:n relationship with the SalesRep
class. The relationship between SalesReps and Accounts is
n:n, and is implemented as two 1:n relationships.

Columns & Rows
Because the SalesRep and Account classes are in a n:n relation-
ship, if a SalesRep is taken off an Account, the Account’s
SalesRep list must be updated as well (see Figure 10). Once
the application has a pointer to the selected SalesRep, it can
reference the selected Account, then locate the pointer to the
same SalesRep inside the Account object’s SalesRep set:

SalesRep.Account.SalesRep

The Object Pascal code to retrieve the second SalesRep point-
er would take this form:

// Get SalesRep from SalesReps extent.
SalesRep := SalesReps.Get;

// Get SalesRep's Account set.
RepAccounts := SalesRep.GetAttribute("Accounts");

...locate desired Account pointer in RepAccount set...

// Delete current RepAccount pointer from set.
RepAccounts.Delete;

// Get Account's set of assigned SalesReps.
AcctSalesReps := RepAccount.GetAttribute("SalesReps");

...locate desired AcctSalesRep pointer in
the AcctSalesReps set...

// Delete current AcctSalesRep pointer from set.
AcctSalesReps.Delete;

Of course, an OQL query might be easier. The sample appli-
cation demonstrates a simple, embedded OQL query in the
SalesMgr form. A query object (derived from the OQLQuery
class) performs the query and returns a result set of objects.
The principles of ODBMS sets are relevant to queries as well.
An OQL query must specify the domain of extents and
object sets over which the query will operate.

Conclusion
Object databases are a natural fit for Delphi’s object-based
development paradigm. This article has examined only a few
object-database features available to Delphi, but has empha-
sized RAD connectivity techniques. From the simple begin-
nings discussed here, developers can build complex ODBMS
applications that enjoy the same advantages of speed and flex-
ibility as C++ or Smalltalk-based systems, yet can be designed
and coded in a fraction of the time. ∆

The author thanks Prasad Jeevaniji, Kris Tanner, and Eric
Vigna for helping prepare this article.

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\MAR\DI9803CM.

Chu Moy, formerly with POET Software, is a consultant with Thomson
Technology Consulting Services in San Francisco. He has a Bachelor’s degree in
electrical engineering from Yale University. He is also a Microsoft Certified
Solution Developer and a Master Certified Novell Engineer. He has had several
years of programming experience with RAD tools, and has been working with
Delphi for the last two years.
28 March 1998 Delphi Informant

29 March 1998 Delphi Informant

Sights & Sounds
Delphi 1, 2, 3

By Christopher D. Coppola

Figure 1: Buttons seamlessly in
Multimedia Buttons
Creating Special Buttons for Special Interfaces

One of the fundamental elements of GUIs is the button; the button
metaphor is widely used and well understood as a component of inter-

face design. In many applications, the interface calls for the functionality of a
button, but demands a more integrated look than the standard button compo-
nents are capable of producing (see Figure 1).
t

In this article, we’ll develop a TMMButton
component (see Listing Two, beginning on page
33) that has all the functionality of a standard
button, but integrates seamlessly with a creative,
high-resolution interface. The TMMButton
component will also provide more feedback to
the user than a standard button.

Standards and Intuitiveness
When we design a user interface, our primary
goals should be to make the interface func-
tional, make the user comfortable, and final-
ly, to make the interface aesthetically pleas-
ing. One of the fundamental challenges of
creating an interface with these characteristics
egrated with the background.
is to use the available interface components
— buttons, text boxes, menus, etc. — in a
way the user can intuitively understand.

One key to designing an intuitive interface is
to adhere to functionality standards. Interface
metaphors, such as the button, have been
employed for so long now that users intu-
itively know how to operate a button.
Therefore, when developing a button compo-
nent, carefully consider every aspect of how a
button works.

The widely accepted standards for the func-
tional operation of a button assert that the
OnClick event is only fired if the mouse but-
ton is released when the mouse pointer is
over the button. In other words, if I press a
button and (with the mouse button still
depressed) move the pointer away from the
component, the component should visually
return to its “normal” state, and shouldn’t fire
an event if I release the mouse button. A
good example of button functionality is the X
button that closes a window in Windows
95/NT. Figure 2 illustrates, in terms of
mouse events, how a button component
should function.

TMMButton vs. other Button Components
We’re going to develop the TMMButton
component so that it responds to mouse
interaction similarly to the Delphi Button,
SpeedButton, or BitBtn components.

Mouse Events Standard Graphic Response

Left Button Down Show the button in its “pressed” state.

Left Button Up Show the button in its “highlighted”
state or its “pressed” state based on
these conditions: If the button is in
an inactive “pressed” state, show
the button in its “pressed” state; if
the button is not in an inactive
“pressed” state, show the button in
its “highlighted” state.

Mouse Enter If the pointer is over the button,
show the button in its “highlighted”
state, then fire the OnClick event. If
the cursor isn’t over the button, show
the button in its “normal” state.

Mouse Leave Show the button in its “normal”
state. If the mouse button is
pressed, set a flag to indicate it’s in
an inactive “pressed” state.

Figure 2: Button functionality in terms of mouse events.

Figure 3: The standard buttons just don’t look right for this interface.

Sights & Sounds
However, the TMMButton component will have three
important differences. First, it will sport improved user feed-
back by displaying a “highlighted” state when the mouse is
over the component. In many multimedia and game inter-
faces, this additional feedback is essential; buttons are inte-
grated with the background so well that the highlight is nec-
essary to identify them. Microsoft’s new “Explorer style”
button has popularized a similar feedback mechanism for
business and productivity applications.

Another significant difference is how TMMButton applies
graphics. All buttons in Windows use graphics, but most
are simply rectangular regions with light and dark borders
that simulate a three-dimensional look. Some button
components feature bitmaps, but hardly integrate with
a custom interface (see Figure 3). The TMMButton
component, on the other hand, displays an entirely new
bitmap for each of its four functional states. This gives
the developer more flexibility in designing a high-resolu-
tion interface where the buttons are nicely integrated with
the background.
30 March 1998 Delphi Informant
Finally, TMMButton will support sound. The value of audio
feedback is often overlooked. As we’ll soon see, sound is simple
to implement, and contributes greatly to the user experience.

Creating the Component
Beginning with the Component Expert, create the
TMMButton class as an ancestor of TGraphicControl. The
Component Expert graciously delivers a template from which
we’ll build the TMMButton component:

type
TMMButton = class(TGraphicControl)
private

{ Private declarations }
protected

{ Protected declarations }
public

{ Public declarations }
published

{ Published declarations }
end;

The first thing I do when defining a new class or subclass is
think about the data the class must represent. The
TMMButton class will clearly need to store bitmaps that repre-
sent the button in each of its visible states — “normal,” “dis-
abled,” “highlighted,” and “pushed.” For these data elements
we’ll use Delphi’s TBitmap object. In addition to storing the
bitmaps, we’ll need a couple of Boolean variables. These will
assist the TMMButton component in determining which
bitmap should be displayed when the component is painted.
We’ll also need four variables to deal with audio feedback.
Two string variables will store the names of the mouse-over
and button-push sounds. The other two variables tell the but-
ton how and where the sounds are stored. For greater flexibili-
ty, TMMButton will allow the developer to use sound files,
sound resources embedded in the .EXE, or sound resources
embedded in a DLL.

We’ll add the data members we’ve just described to the
private section of the class declaration:

private
FBmpNormal, FBmpHiLight,

FBmpPushed, FBmpDisabled: TBitmap;

FSndOver, FSndPush: string;
FSoundType: TSoundType;

FDllInstance: Integer;

FDown, FOver: Boolean;

After we’ve defined the class’ data members, we need to
consider the component’s functionality. I described earlier
how the component should respond to mouse interaction;
now it’s time to translate that description into Delphi code.
We’ll need the component to be aware of the following
mouse actions:

button press
button release
pointer entering the component boundaries
pointer leaving the component boundaries

To react to the mouse button being pressed, the compo-
nent implements a MouseDown method. We’ll simply

Sights & Sounds

published
{ Published declarations }
property PicNormal: TBitMap

read FBmpNormal write setNormal;

property PicHiLight: TBitMap

read FBmpHiLight write setHiLight;

property PicPushed: TBitMap

read FBmpPushed write setPushed;

property PicDisabled: TBitmap

read FBmpDisabled write setDisabled;

property SndOver: string read FSndOver write FSndOver;

property SndPush: string read FSndPush write FSndPush;

property SoundType: TSoundType

read FSoundType write FSoundType;

property DLLInst: Integer

read FDLLInstance write FDLLInstance;

property Height default 30;

property Width default 30;

property Enabled;

property Visible;

property OnMouseDown;

property OnMouseMove;

property OnMouseUp;

property OnClick;

Figure 4: The published interface of TMMButton.
override the MouseDown method already implemented in
TGraphicControl, implement the specific functionality
required in the TMMButton component, then call the
inherited MouseDown method. The OnMouseDown event is
fired only when the mouse button is pressed and the point-
er is over the component. When the component receives a
WM_MOUSEDOWN message, the MouseDown method
sets FDown to True and calls the Paint method.

We’ll implement the MouseUp method to detect when the
mouse button has been released. MouseUp (just as MouseDown)
keeps the value of FDown accurate. Each time MouseUp is
called, FDown is set to False. MouseUp performs another vital
function: It determines if an OnClick event is triggered. Within
MouseUp, we perform a simple check to determine if the point-
er is over the component. If it is, we paint the component and
trigger its OnClick event. If the pointer isn’t over the compo-
nent, nothing more needs to be done.

To detect when the pointer enters and leaves the compo-
nent’s boundaries, we’ll trap the CM_MOUSEENTER and
CM_MOUSELEAVE messages. Do this by adding message-
handling methods:

procedure CMMouseEnter(var Message: TMessage);
message CM_MOUSEENTER;

The message directive tells Delphi that the declared method
should be called whenever the component receives the mes-
sage identified by the integer identifier following the message
directive. In this case, we’ve told the component that
CMMouseEnter should be fired whenever the component
receives a CM_MOUSEENTER message, i.e. whenever the
pointer enters the boundaries of the component.

When CMMouseEnter is executed, FOver is set to True.
Conversely, when CMMouseLeave is executed, FOver is set to
False. In addition, CMMouseEnter and CMMouseLeave will
call the component’s Paint method if the component has a
“highlighted” state bitmap assigned, or FDown is set to True.

Painting the Component with the Correct Bitmap
We’ve seen several places where the component calls the Paint
method to display the bitmap that correctly depicts the cur-
rent state. Overriding the component’s OnPaint event is
advantageous because we can call the method from other
component methods to explicitly cause the component to
paint, but it has another distinct advantage. The component’s
OnPaint event is triggered whenever the component needs to
be repainted because of other screen activity. Because we’ve
overridden the event and placed all the logic for determining
the correct bitmap within the Paint method, no additional
logic or code is necessary to repaint the component when
another screen event makes it necessary to repaint.

The component handles two conditions in the Paint
method. Because this is a visual component, we must con-
sider how the component will function at design time and
run time. At design time the logic is simple: If the “nor-
31 March 1998 Delphi Informant
mal” state bitmap has been assigned, then the component
paints using the “normal” state bitmap; otherwise the com-
ponent paints a line around the component to make it visi-
ble. Notice from the following code that I paint the out-
line using gray and the pmXor pen mode. This ensures that
whatever the background color of the button’s container,
the button will be visible. Many components simply use
black to paint the outline. The result is a component that’s
difficult to locate on a black form at design time.

with Canvas.Pen do begin
Style := psSolid;

Color := clGray;

Mode := pmXor;

end;

Canvas.Brush.Style := bsClear;

Canvas.Rectangle(0, 0, Width, Height);

At run time, the Paint method first determines which bitmap
should be displayed based on the evaluation of the enabled state
of the button, as well as the FDown and FOver variables. If the
button is not enabled, the “disabled” state bitmap is used.
When the button is enabled, FDown and FOver are considered.
If FOver, for example, is False, then the correct bitmap to dis-
play would be the “normal” state bitmap. After the appropriate
bitmap has been determined, a final check is performed to
ensure the correct bitmap has been assigned. It is, after all, con-
ceivable that this component would be used without a “pushed”
or “highlighted” state bitmap. If the appropriate bitmap is not
assigned, then the component will simply use the “normal”
state bitmap to repaint itself. The code that paints the compo-
nent is trivial; I’ve used the CopyRect method of the compo-
nent’s Canvas to perform the paint.

Declaring Properties
Now that we’ve seen how the TMMButton component works,
it’s time to give the component the developer interface neces-
sary to assign bitmaps and other properties unique to each
instance of the component. The TMMButton component has
the published interface shown in Figure 4.

Sights & Sounds

re 5: The interface of the sample application.
The four bitmap properties simply return the value of the
associated private variable. When one of the properties is set,
however, it’s done by a method. Setting the PicNormal proper-
ty, for instance, would cause the component to execute the
setNormal method. The other three bitmap properties,
PicHiLight, PicPushed, and PicDisabled, use the setHiLight,
setPushed, and setDisabled methods, respectively. Each of the
four methods uses TBitmap’s Assign method to store the
bitmap. The setNormal method, because it’s associated with the
most rudimentary of the three properties, also sets the compo-
nent’s Width and Height. The component user can change this,
but it’s reasonable to assume that in most cases the component
should be the same dimensions as the “normal” state bitmap.

In addition to the bitmap properties, the TMMButton com-
ponent has standard Height, Width, Enabled, and Visible
properties, and it exposes the standard OnMouseDown,
OnMouseMove, OnMouseUp, and OnClick events.

Audio Capabilities
Sound is the finishing touch to our new component. Using the
properties declared earlier, the API function PlaySound, and a
private function called doSound, this is a simple task. First, we
must decide where sound is appropriate. Sounds are typically
used in response to the pointer moving over the button, as
when the button is pushed. This means we need to add a call to
doSound to the OnMouseDown and CMMouseEnter events. In
the OnMouseDown event, we call doSound, sending FSndPush as
the parameter. Recall that FSndPush is the private variable that
stores the name of the “push” sound.

The doSound procedure is the key to TMMButton’s audio fea-
tures. Using the FSoundType, FDLLInstance, and whichSound
parameters, doSound uses the PlaySound API function to play
a sound file, a sound from an application resource, or a sound
from a DLL resource.

Installing the TMMButton Component
As with any other component, installation is accomplished by
selecting Install Component from the Component menu:

Delphi 2: From the Install Components dialog box, click
the Add button and locate MMButton.pas.
Delphi 3: From the Install Component dialog box, use the
Browse button to select MMButton.pas as the unit. Select
the package you would like MMButton to be a part of,
then press OK.

When Delphi is finished recompiling the component library,
you’ll find the MMButton icon on the component toolbar of
the Additional page. To install the component on a different
page, modify the component’s Register method. For example:

procedure Register;

begin
RegisterComponents('MyTab', [TMMButton]);

end;

Implementation Tips
One of the more important aspects of using TMMButton to
create compelling interfaces is implementing it correctly.

Figu
32 March 1998 Delphi Informant
First, I’ll show you how to prepare the bitmaps to make
sure the buttons integrate seamlessly with the background.
I’ll also demonstrate how to embed sounds in your .EXE so
you don’t have to distribute .WAV files with the application.
Then when the bitmaps are ready, we’ll create a sample pro-
ject in Delphi to demonstrate how the TMMButton compo-
nent should be implemented.

I used Adobe Photoshop to prepare the bitmaps. If you’re
using another graphics package, some of the specific imple-
mentation examples might be different, but the concepts can
be applied using any capable graphics software. Start with a
good background design. My example is from my company’s
most recent demonstration CD (see Figure 5).

Next, design the buttons. Each button should have four
independent graphics that are drawn in position over the
background. Photoshop’s layer transparency works great for
this. When we’re finished creating the bitmaps for each of
the button states, we should be able to create a rectangular
selection around each of the buttons. The selection should
be the smallest rectangular area that contains each of the
button’s states. Jot down the x,y coordinates of the upper-
left pixel of the selection. This will save having to manually
position the buttons in Delphi. Using the selection, copy
and paste each of the button states into new documents
(see Figure 6).

Once the bitmaps are ready, start a new Delphi project and
add one TImage component for the background and a
TMMButton component for each button in the project. Our
sample project only has one button, so you’ll only need one
TMMButton for now.

Set the TImage component’s Picture property to the back-
ground bitmap. This will act as the application’s background.
You might also want to add some code to the form’s OnCreate
event to size the application correctly:

ClientWidth := imgBack.Width;

ClientHeight := imgBack.Height;

Figure 6: The four bitmaps of the sample button.

Normal

Highlight

Pushed

Disabled

Sights & Sounds
Next, set the PicNormal, PicHiLight, PicPushed, and
PicDisabled properties of the TMMButton component. The
component will automatically size to the dimensions of the
PicNormal bitmap, but you’ll have to position the compo-
nents on the form so they line up with the original design. If
you wrote down the top-left coordinate from earlier, enter the
values in the component’s Top and Left properties. Otherwise,
you must visually align the component with the background.

Finishing Up
Now let’s add some audio. It would be simple enough to set
the SndPush and SndOver properties to the names of .WAV
files. In most cases, however, it’s more efficient to embed the
sounds in the application. This is simple to accomplish using
a resource script and the command-line resource compiler
that ships with Delphi (Brcc32.exe). Resource scripts are
simple. The following sample script generates two WAVE
resources that can be accessed by the names WAV_PUSH
and WAV_OVER:

WAV_PUSH WAVE "push.wav"

WAV_OVER WAVE "over.wav"

Delphi’s resource compiler generates a resource file (.RES)
that can be linked with a Delphi executable by adding a line,
such as the following, to the application source:

{$R sounds.res}

All that’s left to do is to tell the button component
which resources to use, and where they’re located. In
this case, the default stAppResource tells the component
to find the resource specified in SndPush in the applica-
tion’s executable.

That’s all there is to it. Run the test application (see
Listing Three on page 35) and you’ll see that the component
33 March 1998 Delphi Informant
handles everything related to the button display and
audio. All you must do is add the desired code to the
component’s OnClick event. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\MAR\DI9803CC.

Chris Coppola is one of the founding principals of Advanced Creative
Technologies III, Inc., a multimedia and Internet development company.
Chris has written about multimedia development in Delphi 2 Multimedia
Adventure Set [Coriolis Group Books, 1996], Director 5 Wizardry [Coriolis
Group Books, 1996], and Visual Basic 5 Multimedia & Web Adventure Set
[Coriolis Group Books, 1997]. You can reach him at coppola@act-3.com or
http://www.act-3.com.
Begin Listing Two — TMMButton Component
unit MMButton;

interface

uses
Windows, Messages, Classes, Graphics, Controls;

type
TSoundType = (stAppResource, stDLLResource, stFile);

TMMButton = class(TGraphicControl)
private

{ Private declarations }
FBmpNormal, FBmpHiLight,

FBmpPushed, FBmpDisabled: TBitmap;

FSndOver, FSndPush: string;
FSoundType: TSoundType;

FDllInstance: Integer;

FDown, FOver: Boolean;

procedure setNormal(Value: TBitMap);

procedure setHiLight(Value: TBitMap);

procedure setPushed(Value: TBitMap);

procedure setDisabled(Value: TBitmap);

procedure doSound(whichSound: string);
protected

{ Protected declarations }
procedure MouseDown(Button: TMouseButton;

Shift: TShiftState; X, Y: Integer); override;
procedure MouseUp(Button: TMouseButton;

Shift: TShiftState; X, Y: Integer); override;
procedure CMMouseEnter(var Message: TMessage);
message CM_MOUSEENTER;

procedure CMMouseLeave(var Message: TMessage);
message CM_MOUSELEAVE;

procedure Paint; override;
procedure Click; override;

public
{ Public declarations }
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
{ Published declarations }
property PicNormal: TBitMap

read FBmpNormal write setNormal;

property PicHiLight: TBitMap

read FBmpHiLight write setHiLight;

property PicPushed: TBitMap

read FBmpPushed write setPushed;

property PicDisabled: TBitmap

read FBmpDisabled write setDisabled;

property SndOver: string read FSndOver write FSndOver;

property SndPush: string read FSndPush write FSndPush;

property SoundType: TSoundType

read FSoundType write FSoundType;

http://www.act-3.com

Sights & Sounds
property DLLInst: Integer

read FDLLInstance write FDLLInstance;

property Height default 30;

property Width default 30;

property Enabled;

property Visible;

property OnMouseDown;

property OnMouseMove;

property OnMouseUp;

property OnClick;

end; //TMMButton

procedure Register;

implementation

uses
MMSystem;

procedure Register;

begin
RegisterComponents('Additional', [TMMButton]);

end;

constructor TMMButton.Create(AOwner: TComponent);

begin
inherited Create(AOwner);

Width := 30;

Height := 30;

FBmpNormal := TBitMap.Create;

FBmpHiLight := TBitmap.Create;

FBmpPushed := TBitmap.Create;

FBmpDisabled := TBitmap.Create;

FSoundType := stAppResource;

FDLLInstance := 0;

end;

destructor TMMButton.Destroy;

begin
FBmpNormal.Free;

FBmpHiLight.Free;

FBmpPushed.Free;

FBmpDisabled.Free;

inherited Destroy;

end;

procedure TMMButton.setNormal(Value: TBitMap);

begin
FBmpNormal.Assign(Value);

if not FBmpNormal.Empty then
begin

// Set the height and width of the component based
// on the size of the Normal bitmap.
Height := FBmpNormal.Height;

Width := FBmpNormal.Width;

end;
end;

procedure TMMButton.setHiLight(Value: TBitMap);

begin
FBmpHiLight.Assign(Value);

end;

procedure TMMButton.setPushed(Value: TBitMap);

begin
FBmpPushed.Assign(Value);

end;

procedure TMMButton.setDisabled(Value: TBitMap);

begin
FBmpDisabled.Assign(Value);

end;

procedure TMMButton.doSound(whichSound: string);
begin

case FSoundType of
stAppResource:

PlaySound(PChar(whichSound), hInstance,

SND_RESOURCE or SND_ASYNC or SND_NODEFAULT);

stDLLResource:
34 March 1998 Delphi Informant
PlaySound(PChar(whichSound), FDLLInstance,

SND_RESOURCE or SND_ASYNC or SND_NODEFAULT);

stFile:

PlaySound(PChar(whichSound), 0,

SND_FILENAME or SND_ASYNC or SND_NODEFAULT);

end;
end;

procedure TMMButton.MouseDown(Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);

begin
FDown := True;

doSound(FSndPush);

if not FBmpPushed.Empty then
Paint;

inherited MouseDown(Button, Shift, X, Y);

end;

procedure TMMButton.CMMouseEnter(var Message: TMessage);
begin

FOver := True;

doSound(FSndOver);

if (not FBmpHiLight.Empty) or FDown then
Paint;

end;

procedure TMMButton.CMMouseLeave(var Message: TMessage);
begin

FOver := False;

if (not FBmpHiLight.Empty) or FDown then
Paint;

end;

procedure TMMButton.MouseUp(Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);

var
DoClick: Boolean;

begin
FDown := False;

DoClick := (X >= 0) and (X < ClientWidth) and
(Y >= 0) and (Y <= ClientHeight);

if DoClick then
begin

Paint;

if Assigned(OnClick) then
OnClick(Self);

end;
inherited MouseUp(Button, Shift, X, Y);

end;

procedure TMMButton.Click;

begin
end;

procedure TMMButton.Paint;

var
ARect: TRect;

Src: TBitMap;

OldPal: HPalette;

begin
OldPal := SelectPalette(Canvas.Handle,

FBmpNormal.Palette,False);

try
RealizePalette(Canvas.Handle);

ARect := Rect(0,0,Width,Height);

if (csDesigning in ComponentState) then
// Design-time paint response.
if FBmpNormal.Empty then

begin
// Add visibility when designing.
with Canvas.Pen do begin

Style := psSolid;

Color := clGray;

Mode := pmXor;

end;
Canvas.Brush.Style := bsClear;

Canvas.Rectangle(0, 0, Width, Height);

end
else

Canvas.CopyRect(ARect, FBmpNormal.Canvas, ARect)

Sights & Sounds
else
begin // Run-time paint response.

// Check button state & assign appropriate bitmap.
if not Enabled then

Src := FBmpDisabled

else if not FOver then
Src := FBmpNormal

else if FDown then
Src := FBmpPushed

else
Src := FBmpHiLight;

// Catch all if the Src bitmap is not valid at this
// point, paint the normal bitmap.
if Src.Empty and (not FBmpNormal.Empty) then

Src := FBmpNormal;

// Paint the component's canvas.
if not Src.Empty then

Canvas.CopyRect(ARect, Src.Canvas, ARect);

end;
finally

if OldPal <> 0 then
SelectPalette (Canvas.Handle,OldPal,False);

end
end; // Paint

end.

End Listing Two
Begin Listing Three — Sample Application
program Test;

uses
Forms,

TestMain in 'TestMain.pas' {frmMain};

{$R *.RES}
{$R sounds.res}

begin
Application.Initialize;

Application.CreateForm(TfrmMain, frmMain);

Application.Run;

end.

unit TestMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics,

Controls, Forms, Dialogs, MMButton, ExtCtrls;

type
TfrmMain = class(TForm)

imgBack: TImage;

MMButton1: TMMButton;

procedure FormCreate(Sender: TObject);

procedure MMButton1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
frmMain: TfrmMain;

implementation

{$R *.DFM}

procedure TfrmMain.FormCreate(Sender: TObject);

begin
ClientWidth := imgBack.Width;

ClientHeight := imgBack.Height;

end;

procedure TfrmMain.MMButton1Click(Sender: TObject);
35 March 1998 Delphi Informant
begin
ShowMessage('Fired the cannon!');

end;

end.

End Listing Three

36 March 1998 Delphi Informant

The API Calls
Delphi 1, 2, 3

By John Ayres
Restoring Animation
Delphi Apps Can Exhibit Standard Minimize and Restore

Delphi does a great job of encapsulating the Windows API, insulating develop-
ers from some nasty and mundane requirements of Windows programming.

Due to this encapsulation, however, Delphi programs exhibit certain anomalies not
present in Windows applications written in other development environments; for
example, the lack of animation when a Delphi program is minimized or restored.
When a window is minimized, it displays a
series of animated rectangles, decreasing in size
and moving toward the task bar until the win-
dow is fully minimized. The reverse occurs
when a window is restored from a minimized
state. Unfortunately, the way Delphi encapsu-
lates a Windows application prevents this from
occurring with Delphi-created applications.

When a Delphi application is created, there are
two windows present: the main window, and a
hidden application window. It is the hidden
application window that contains the entry and
exit points for the main function of the
Windows application. When the main window
of an application is minimized, the “minimize”
message sent (i.e. SC_MINIMIZE) is inter-
cepted by this hidden application window.
Instead of minimizing the main window, it’s the
hidden application window that minimizes; the
main form and all other displayed forms are
hidden. When an application is restored, it’s the
application window that’s restored, and the
main form and all other forms are returned to a
visible state. Because the main window is never
truly minimized, the minimizing animation
never fires.

To correct this, we must re-route specific mes-
sages from the Application object to the main
form, and provide additional processing to
minimize and restore. The first step is to identi-
fy where code must be placed to intercept and
handle the appropriate messages. We will be
dealing with the WM_SYSCOMMAND mes-
sage, which is sent when the user chooses
Minimize or Restore from the system menu, or
presses the appropriate button in the upper-
right corner of a window.
The OnMinimize and OnRestore events of the
Application object seem like a good place to
start. However, both of these events fire after
the Application object has been minimized or
restored. If the Application object is mini-
mized before the main form is minimized,
the main form will simply vanish, and the
minimizing animation will never appear.
Therefore, the OnMinimize event will not
work for our purposes. Conversely, the
Application object must be restored before the
main form is restored, so the main form will
be visible and the restoring animation will
occur. We can then use the OnRestore event to
run code that will restore the main form.
Another Application object event to consider is
the OnMessage event. This event fires before
the application is minimized, thus allowing us
to send the SC_MINIMIZE message to the
main form before it disappears.

Therefore, we will create event handlers for the
Application object’s OnMessage and OnRestore
events to route the appropriate messages to the
main form. We’ll also need a message handler
for the WM_SYSCOMMAND message. Thus,
our TForm class declaration should appear as:

TForm1 = class(TForm)
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }
procedure AppRestore(Sender: TObject);

procedure AppOnMessage(var Msg: TMsg;

var Handled:

Boolean);

procedure WMSysCommand(var Msg:

TWMSysCommand);

message WM_SYSCOMMAND;

end;

The API Calls
Now that the appropriate event handlers have been added to
the class declaration of the main form, hook them up to the
Application object in the form’s OnCreate event handler:

procedure TForm1.FormCreate(Sender: TObject);

begin
{ The Application.OnMinimize event fires after the appli-

cation has been minimized and the main form is hidden.
So we must provide a handler for the OnMessage event,
which fires before the application is minimized. }

Application.OnMessage := AppOnMessage;

{ The Application.OnRestore event fires after the appli-
cation has been restored. This is fine for our purposes
but the application doesn't send the Restore message to
the form. Our main form will reappear, but it will be
minimized in one of the lower corners behind the task
bar. Thus, we must provide a handler for the OnRestore
event so the Restore message can be sent to the form. }

Application.OnRestore := AppRestore;

end;

When the Application object gets WM_SYSCOMMAND (indi-
cating a minimize or restore action), the message is handled by
the Application object, then destroyed (the main form never sees
the message). The OnMessage event of the Application object will
fire before the message has been handled and destroyed, allowing
us to send the message to the main form before it’s hidden. In
the OnMessage event handler, determine if the message is
WM_SYSCOMMAND, and if it indicates the application is
being minimized. If so, call the SendMessage API function to pass
this message to the main form:

procedure TForm1.AppOnMessage(var Msg: TMsg;

var Handled: Boolean);

begin
{ The OnMessage event fires before the OnMinimize event,

so we must put code here to route the Minimize message
to the form. If the message is coming from the
system menu... }

if Msg.Message = WM_SYSCOMMAND then
{ ...and it is specifically the Minimize command... }
if (Msg.wParam and $FFF0) = SC_MINIMIZE then

{ ...send the Minimize message to the form. }
SendMessage(Handle, WM_SYSCOMMAND, SC_MINIMIZE, 0);

end;

This message will be intercepted by our WM_SYSCOMMAND
message handler. We must check the incoming message type
to determine if it’s SC_MINIMIZE. This handler will receive
all system command messages; check for and handle only the
appropriate command. All other commands must be sent to
the inherited message handler so the standard functionality of
a window won’t be compromised. When checking the
CmdType member of the TWMSysCommand structure passed
to our handler, combine it with the value $FFF0 using the
Boolean and operator. The least significant four bits of this
member are used internally by Windows, and we must mask
them out to determine the appropriate message type. When
we’ve received SC_MINIMIZE, pass the message information
to the Def WindowProc API function, which performs the
default behavior of the specified message on the window
whose handle is passed to the function in its first parameter.
This function causes the form to truly minimize, and the
minimizing animation to appear. Then, call the Minimize
method of the Application object, which minimizes the
37 March 1998 Delphi Informant
application and hides our minimized main form. Our
WM_SYSCOMMAND message handler should look like:

procedure TForm1.WMSysCommand(var Msg: TWMSysCommand);

begin
{ If we are receiving the Minimize message... }
if (Msg.CmdType and $FFF0) = SC_MINIMIZE then

begin
{ ...pass it to the default window procedure. This

causes the form to minimize with animation. }
DefWindowProc(Handle, WM_SYSCOMMAND, SC_MINIMIZE, 0);

{ We must now minimize the application object. This
actually minimizes the application, hiding the
minimized form. }

Application.Minimize;

{ Indicate that the message was handled. }
Msg.Result := 0;

end
else

{ For any other message, we must send it to the
inherited message handler. Because the form is
already minimized, the Restore animation will work
correctly. }

inherited;
end;

This should cause animation to appear when minimizing the
form. When the application is restored, the main form will reap-
pear, but it will remain minimized unless it’s specifically told to
restore. To do this, we post the WM_SYSCOMMAND message,
specifying the restore command (SC_RESTORE) to the main
form from the application’s OnRestore event handler. No other
processing is required; Windows takes care of the rest:

procedure TForm1.AppRestore(Sender: TObject);

begin
{ When the minimized application is restored, the appli-

cation object simply sets the Visible property of its
forms to True; the forms don't actually receive the
Restore message. Therefore, when the application object
receives the Restore message, we must specifically send
it to the main form. }

PostMessage(Handle, WM_SYSCOMMAND, SC_RESTORE, 0);

end;

Your Delphi apps will now exhibit the minimizing and restoring
animation common to Windows apps. But this method isn’t per-
fect; the animation will fall to one side of the screen instead of
animating toward the icon on the task bar. However, this tech-
nique does provide a more traditional Windows look and feel. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\MAR\DI9803JA.

John Ayres is a consultant for Ensemble Systems Consulting in Dallas, using
Delphi to produce high-end client/server applications for various Fortune 500
companies. With over eight years of programming experience, he’s worked for a
variety of companies, producing a broad range of software, from third-party
add-in utilities to games. He keeps himself busy by co-authoring The Tomes of
Delphi 3: Win32 Core API (ISBN 1-55622-556-3) [WordWare, 1998] and
other Windows programming books for Delphi. For more information, visit
http://www.WordWare.com.

http://www.WordWare.com

New & Used

By Warren Rachele

Figure 1: Selecting a

38 March 1998 Delphi Informant
Crystal Reports Professional 6.0
Seagate Software’s Query and Report Writing Tool

The flagship product of the software development company where I work,
The Hunter Group, was a case management tool that had a not-so-unique

set of reporting specifications. In addition to a plethora of menu-chosen reports
configured with user-modifiable parameters, the database was used to
research trending not immediately apparent through the stock reports. For this
reason, the user requirements specified the necessity of being able to create
free-form reports and queries. While Borland has improved reporting functions
with the addition of the QuickReport components, they remain internal, and
can only be modified through a series of parameters passed from the user.
To satisfy this requirement, we turned our
attention to external report-query tools, specifi-
cally report writers. The most powerful, non-
intimidating tool available was Crystal Reports
from Seagate Software, which we’ve included as
a part of our product since its inception. In
version 6.0, Crystal Reports works with data
on a wide range of platforms, and comes with
components that compile directly into all of
the popular visual development environments
in use today. The collection of tools included
in the Crystal Reports package considerably
expands the capabilities of, and market oppor-
tunities for, your software.
 report format from the Report Gallery.
Make Room!
A full installation of the 32-bit version of
Crystal Reports Professional, including sam-
ples, documentation, the data access layers,
and tools that ship with the product, takes a
bit under 150MB. I recommend you install
the sample files if you’re not familiar with the
product. There are numerous tutorials in the
printed documentation that make use of
these files, and each is helpful in shortening
the learning curve. When no longer neces-
sary, these files are easily deleted.

Performing a custom installation allows you
to install only the components you’re inter-
ested in utilizing in your development efforts.
The installation goes quickly and without
problems. Depending on the components
and data-access layers you select, the Borland
Delphi Engine (BDE) and ODBC (Open
Database Connectivity) pieces may be
installed. You will be reminded to configure
them at the end of the installation process.

Installing the Crystal Reports Engine VCL
interface component into Delphi 3 follows
the standard process for installing any third-

Figure 2: The Create Report Expert dialog box.

Figure 3: Adding fields in the Create Report Expert dialog box.

Figure 4: Selecting categories in the Create Report Expert
dialog box.

New & Used
party component. Choosing to install the new component
adds the object to the Data Access tab of the VCL. Code
for Delphi 3 is located in a separate subdirectory of the
VCL directory, and the components and support code for
earlier versions of Delphi are also provided.

Basic Component Usage
Building a report into your Delphi program is a two-
step process. The report is designed in the Crystal
Reports Designer environment. Integrating the report
into your executable consists of adding TCrpe to your
form and pointing the properties to the report. When
the component is executed, it will call the Crystal
Reports Engine to handle the build and printing of the
report. New reports are formatted via a wizard that
walks you through the design process, and ends with a
completed report that needs very little modification. An
included sample report demonstrates how easily a report
can be assembled using the Biolife.DB, a sample
Paradox table provided with Delphi and stored in the
\Delphi 3\Demos\Data directory.

The first step in the process is to select a report format
from the Report Gallery dialog box; the sample uses a
Standard format (see Figure 1). Selecting a format takes
you directly to the Create Report Expert dialog box in
which the rest of your report selections are made (see
Figure 2). Add the fields Species No, Category,
Common_Name, Species Name, Length, and Length_In
to the report (see Figure 3). Click on the Sort tab and
select BIOLIFE.Category as the sort field (see Figure 4).
Finally, click on the Style tab and select Leading Break

from the list (see Figure 5). Your report is finished with
one small annoyance to be corrected: Crystal Reports
subtotals and totals all numeric fields unless told not to.
Click on the Total tab and remove all the fields selected
to be totaled. Click the Preview Report button, and your
report is configured in a WYSIWYG window (see
Figure 6).

This report is now usable in a Delphi program. As shown
in Figure 7, two components are needed to test the report:
TCrpe and a Button to execute the report. Add the follow-
ing statement to Button1Click:

Report1.Execute;

TCrpe requires minimal modification to work. The only
attribute that needs to be set for this example is the
report name. This property is set to the report just creat-
ed in Crystal Reports.

Run the sample program and you see the form window
with a button. Clicking the Report button starts the report-
generation process. The engine loads quickly (without a
splash screen) and is printed to the screen for preview by
default. The Crystal Reports Engine window automatically
provides the user with full preview capabilities: zoom, page
by page, top of report, and end of report. A button sends
39 March 1998 Delphi Informant

Figure 6: The report is configured in a WYSIWYG window.

Figure 7: Putting Crystal Reports to work in Delphi.

Figure 5: Selecting styles in the Create Report Expert dialog box.

New & Used

40 March 1998 Delphi Informant
the output to the printer and closes the window.
Another button is provided that connects to the distri-
bution expert for quickly sending the output to a des-
tination other than the printer.

The properties of the VCL component provide an
interface to nearly all the modifiable properties of
the report and its display. Data-selection parameters
and the selection formula itself can be passed direct-
ly from the component, allowing a broad range of
user control over the data selection and window pre-
sentation. The extensive range of output destina-
tions available through the report designer is also
available through your executable. Crystal Reports
provides a wide range of destinations and formats
for the report, other than a printer, and facilitates
this through an interface to the Destination Expert.
The output can be directed to a disk file in various
popular formats or sent directly to another person
in the form of an attachment to an e-mail message.

The e-mail formats that are supported
include MAPI, VIM (cc:mail), and
Microsoft Exchange. Crystal Reports
can also directly produce HTML out-
put for placing reports on a Web page
or intranet.

Seagate Toolbox
Seagate provides tools to make end-user
access to your data stores easier and
more secure. The Crystal Dictionary
system provides the database profes-
sional with the ability to make their
data more accessible to users by format-
ting the data elements into more
friendly terms while limiting access to
the level needed by the individual.
Users are often unable to access a data-
base directly because of their lack of
understanding of the relational model.
A database made up of multiple inter-
related tables is easily understood by
the database designer, but the relation-
ships aren’t always clear to the end user.

A Crystal Dictionary creates a view, a
way of presenting the data in a more
user-friendly way that hides the com-
plexity of the relationships. Field and
table names can be changed through an
alias making them more recognizable
to the user. New column headings and
contextual help can be attached to each
field or table, making the data columns
more meaningful. This friendlier inter-
face adds to the productivity of the
end-data users by making reporting
and querying easier. The view lowers
the number of support calls needed

New & Used
when providing user access to
the data stores, and has the
additional benefit of limiting
access to the specific data
fields the designer deems
appropriate to the user’s secu-
rity level.

The Crystal Dictionary has a
secondary benefit: It makes
Paradox and .DBF data
immediately accessible to the
Crystal Query Designer. The
query tool is designed to cre-
ate simple-to-complex SQL
statements for data selection.
The Crystal Query Designer
works only with SQL data-
bases or those accessible
through ODBC. This tool is
a visual query builder that
steps the user through the
process of assembling a work-

able SQL sentence. If the user is prepared for building
more complex queries without the use of the wizard, the
tool provides for direct entry of the sentence. Crystal
Query Designer can make use of queries that the user has
designed and used in other products by importing them
into the tool. Executing the sentences is simply a matter of
clicking the Run button and having the selected rows
returned to the display window.

Documentation
The documentation supporting Crystal Reports is seg-
mented by intended audience. The User’s Guide offers a
good basis for starting with the product, providing tutori-
als and numerous examples for those who will use the
product interactively. Advanced users won’t be satisfied
with the level of this document; it leaves numerous impor-
tant questions unanswered. Developer documentation is
split among several online files. For the Delphi user there
are two Windows Help files of interest: Ucrpe.hlp and
Developr.hlp. The first documents the VCL component;
the second offers general help for the developer accessing
the Crystal Reports Engine. The quality of the online doc-
umentation is spotty, containing several errors, omissions,
and poor examples. For more technical information
regarding the report engine, the developer must switch for-
mats completely. The Technical Reference is a .PDF file,
readable through Adobe Acrobat.

Market Positioning
Seagate Software markets Crystal Reports as a desktop query
and report writer tool within an application’s segment they
call Business Intelligence. The targets of this market, infor-
mation workers, are substantially different from those of the
software development population. Information workers,
whose responsibilities include data mining and report pro-
duction from corporate data stores, are seeking an intuitive

Crystal Reports Professional 6.0 works
with data on a wide range of platforms,
and comes with components that compile
directly into all of the popular visual devel-
opment environments in use today. The
collection of tools included in the Crystal
Reports package considerably expands the
capabilities of, and market opportunities
for, your software. While the strength of
the Report Designer is enough to recom-
mend this product, the VCL provides a fast
loading, highly modifiable interface to a
powerful report engine.

Seagate Software
1095 West Pender St., 4th Floor
Vancouver, BC V6E 2M6
Canada
Phone: (800) 877-2340 or (604) 681-3435
Fax: (604) 681-2934
E-Mail: sales@img.seagatesoftware.com
Web Site:
http://www.seagatesoftware.com
Price: Professional Edition, US$395,
upgrade US$199; Standard Edition,
US$149, upgrade, US$79.
41 March 1998 Delphi Informant
interface and extensive selection and formatting capabilities.
This group will be thrilled with this latest release. The learn-
ing curve for all but the fundamentals is rather steep
because of the quality of the documentation, but the results
are more than worth the effort.

Software developers have dual learning curves in their
paths to success. The first task is to learn the Crystal
Reports method of report creation. This will be easier for
the developer than the information worker as the steps will
be more intuitive. Creating a formula, for example, is a
more comfortable process for the developer than the aver-
age information worker, just as the process of assembling a
syntactically correct sentence is the programmer’s domain.
The programmer then must learn the interface specific to
his or her development tools. Seagate doesn’t make this
easy. As mentioned earlier, the documentation is not set up
to be read; it’s intended for ad hoc use. Developers are
expected to have an above-average knowledge of their plat-
forms. And programmers working with the Delphi VCL
component will be comfortable adding the object to their
projects and setting their properties. The number of prop-
erties will require some study of the Help files in order to
fully realize the power of the component, but the results
are worth the effort.

Conclusion
Seagate Crystal Reports Professional 6.0 is an excellent
product to consider on either of two levels. For the Delphi
developer, the VCL component provides a fast loading,
highly modifiable interface to a powerful report engine.
Its formatting, selection, and output destination capabili-
ties open numerous possibilities for your software develop-
ment efforts.

If the user specification of your project calls for an external
query and report writing tool, it would be difficult to find
one this powerful, yet as easy to use. Properly trained users of
Crystal Reports will discover ways of becoming more produc-
tive users of the data created by your application. The
strength of the Report Designer alone is enough to recom-
mend this product, but the value exceeds that offered by the
component-only products. ∆

Warren Rachele is Chief Architect of The Hunter Group, an Evergreen, CO software
development company specializing in database-management software. The company
has served its customers since 1987. Warren also teaches programming, hardware
architecture, and database management at the college level. He can be reached by
e-mail at wrachele@earthlink.net, or by telephone at (303) 674-8095.

http://www.seagatesoftware.com

New & Used

By Peter Hyde

Figure 1: Rubicon sea
search engine.

42 March 1998 Delphi Informant
Rubicon for Delphi
Tamarack Associates’ Database Search Engine

Have you ever noticed the way users encounter a new way of doing things,
grow to like it, and suddenly it has to be in every application you create?

Of late, full-text searches, like those popularized by sites such as AltaVista
(http://altavista.digital.com), have entered the ranks of the “must have.”
This is no mere peccadillo on the part of the
user. For many classes of applications, there
are clear benefits to using a full-text database
search, rather than (or as well as) a more
structured and formal SQL-style one. Users
find keyword-based searching easy to learn
and master because they can dig into the con-
tent of BLOB fields containing entire docu-
ments and, above all, a well-implemented
search can provide unsurpassed performance.
Nor is there anything to prevent a savvy
developer from implementing hybrid search-
es, i.e. those that use keywords to quickly
narrow the target range, then apply more tra-
ditional comparisons on fields such as dates
or prices to produce the final result set.
rch performance at the Delphi resource Web
There is a trade off, of course. Such an
engine depends on generating, maintaining,
and using indexed word tables for each
database — a job that can be very resource
hungry in memory, disk and network space,
CPU terms, and time. Having gone down
this track more than once, I’ve often wished
for a component set that provides peak
search performance and flexibility while
keeping a close eye on resource usage.

Enter Rubicon from Tamarack Associates. I
first saw it in action at a pre-launch demon-
stration of the Delphi resource site at
http://developers.href.com (see Figure 1),
where it was performing searches on 300MB
InterBase tables in under half a second.
(Now that the site has closer to a gigabyte of
information, you can go and check its speed
for yourself.) Tamarack claims speed
improvements of up to 5,000 times com-
pared to SQL queries — and the larger the
database, the better it gets.

After a closer inspection, I wished I’d discov-
ered it earlier, not least because of the creative
and efficient way it minimizes the size of its
index files. Consider how you’d go about pre-
serving a list of the records in a 100,000-
record database that might contain a given
word. Using a BLOB field to store a Longint
ID for each matching record seems like a rea-
sonable approach. But in no time at all you
have a table where each word’s index BLOB
might contain up to 100,000 Longints!

http://altavista.digital.com
http://developers.href.com

Figure 2: Rubicon located four of my articles — in a Paradox data
across a LAN in just over 1/100th of a second.

New & Used
Economy and Speed
Rubicon does better than this: Instead of storing record
numbers, it simply maintains a bitmapped array of record
markers. If a word is present in a record, its bit is turned
on; if not, it’s turned off. Immediately, the maximum
BLOB size in each word-table record is reduced from
roughly 400KB to 12.5KB. Not only that, but smart bit-
style operators are very fast and easy to use when perform-
ing “and” and “or” operations in multi-word searches. In
effect, each Rubicon word ends up with a sparse array of
bits, which leads to another optimization: The best thing to
do when storing sparse arrays is to compress them. Rubicon
will typically compress that 12.5KB to under 1KB, option-
ally in memory as well as on disk. The result is a search
tool that’s skimpy on resources without sacrificing speed.
To test this, I ran its demonstration program against a
2,000-article database (approximately 6MB of data).
Rubicon took a minute to create an index table of 2MB,
then performed multi-word searches that located matching
articles in under 1/50th of a second (see Figure 2). Only
the optional creation of a result table of matching records
Class Description

TMakeDictionary Used to scan the records of the sour
words used in the selected fields and
huge table versions come with Work

TUpdateDictionary Keeps a dictionary synchronized with
table versions come with Workgroup

TSearchDictionary Performs word searches using the d
Professional Edition.

TMakeProgress A drop-in form that will automatically
TUpdateStats A drop-in form that will automaticall

used. It’s primarily designed for mon
TUpdateTable A descendant of TTable that has sever

TUpdateDictionary checks to see if its
matically connect the appropriate me

TRubiconRichEdit A read-only control that can display te
of the control is similar to a TDBMemo

TSearchHints A TCustomGrid descendant that displ
has entered into an edit control. The
giving the user instant feedback.

TSearchController Performs a search on multiple tables

Figure 3: Key Rubicon components.

43 March 1998 Delphi Informant
took any noticeable time. This was natural
because, at that point, each record must be phys-
ically copied across the network.

Flexibility
Rubicon gets full marks for speed and economy.
What about flexibility? Well, power users won’t
be disappointed. In addition to words, phrases,
and simple Boolean expressions, Rubicon also
supports expressions such as “search near
Delphi” or “like angle”, and reasonably complex
combinations such as “like deficit or like loss”.
Critical issues such as lookup fields have not
been overlooked: Rubicon lets you define table
links so words coming from the lookup tables

can be indexed, not just words from the main table.
Additional features such as ranking, word hints, search
narrowing, and on-the-fly results mean that applications
using Rubicon will have a friendly and finished feel. None
of these features would be worth having if Rubicon were
weak in the critical area of index creation and mainte-
nance. No database or Web application would survive long
in production if it had to be shut down for long periods so
the index could be regenerated. Fortunately, again,
Rubicon shines.

Highly Scalable
To begin with, Rubicon provides not one, but two index-
creation components. TMakeDictionary is used for initial
index-table creation and also (desirably) whenever extensive
changes have been made to the database or external files
being indexed. It is typically run in batch mode, perhaps
overnight for very large jobs. For minor edits, updates, or
deletes, the TUpdateDictionary component is much quicker
as it works by amending the index rather than rebuilding it.
(A list of key components is shown in Figure 3.)

base —
ce table, and create or recreate a dictionary of all the
 their record locations in the table. Network, threaded, and

group and Professional editions.
 changes in the source table. Network, threaded, and huge
 and Professional editions.
ictionary. A huge table version comes with the

 configure itself to display the progress of TMakeDictionary.
y configure and display itself when TUpdateDictionary is
itoring the update process during development.
al key TUpdateDictionary interface methods built in.
DataSource.DataSet is a TUpdateTable, and, if so, will auto-
thods.
xt or RTF files with matching words highlighted. The behavior
or TDBRichEdit, but is only available on 32-bit platforms.

ays words that match or nearly match the words the user
 words displayed may be updated as the user types, thus

 (Professional Edition only).

New & Used
Any number of users can
search using the Standard
Edition of Rubicon, but only
one process can do index
builds or updates. The
Workgroup Edition supports
threading so updates can be
carried out from multiple
workstations, and also adds
useful features, such as
indexing of HTML and RTF
files, and matching-word
highlighting.

For high-end applications, the
Professional Edition provides a
version of the components
that supports segmented
indices for tables with more
than 250,000 records, multi-
processor indexing, and multi-
table searching.

Help
Rubicon’s documentation includes an excellent introduc-
tion to the components and the way they should be used,
a “reference” section that alphabetically lists the compo-
nents, properties, and methods with clear examples, and
information on advanced topics, such as huge tables,
linked lookup fields, working with TQuery, memory
management, threading, and much more. In contrast,
the online Help is a little disappointing. It’s a straight
facsimile of the manual, meaning the layout and hyper-
links are somewhat idiosyncratic. Most frustrating of all is
that it’s not context sensitive in Delphi 3. (The other
compilers are fine.)

Apart from the demonstration program, a collection of tight-
ly focused example projects is provided with Rubicon to
highlight key features, components, and properties. Finally,
not to be overlooked are utility components and programs
that range from an indexing progress meter to index verifica-
tion, optimization, and comparison programs. Together, they
make this a refined product indeed.

Almost inevitably, a product as good as this will attract
third-party add-ons. In the case of Rubicon, it’s highly pre-
dictable that such support will be Web-oriented. In mid-
1997, HREF Tools Corp. (http://www.href.com) released
TWebRubicon, a component that integrated Rubicon opera-
tions into their WebHub application framework. If there
are not similar add-ons out there already from other ven-
dors, they are sure to follow.

Conclusion
Full-text searching is a very useful and oft-requested search
strategy, yet not at all easy to implement efficiently. Tamarack
Associates has tackled the job with intelligence, flair, and
thoroughness. Search no further. ∆

Rubicon is a set of high-performance,
text-search components for all versions
of Delphi. Its excellent speed, flexible
searching options, superb scalability,
and high level of finish make it an obvi-
ous choice for Web search engines,
help desks, or any application where
users want quick and easy access to
information, regardless of its structure.
Rubicon can be used with HTML, text
and RTF files, any BDE-supported data-
base, and TurboPower’s FlashFiler.

Tamarack Associates
868 Lincoln Avenue
Palo Alto, CA 94301
Voice/Fax: (650) 322-2827
E-Mail: info@tamaracka.com
Web Site: http://www.tamaracka.com
Price: Standard Edition, US$99;
Workgroup Edition, US$199;
Professional Edition, US$299. The man-
ual is included with the Workgroup and
Professional editions; the manual for
the Standard Edition is US$20.
44 March 1998 Delphi Informant
Peter Hyde is the author of TCompress and TCompLHA component sets for
Delphi and C++Builder, and is Development Director of South Pacific
Information Services Ltd., which specializes in creating dynamic Web sites. He
can be reached via e-mail at peter@spis.co.nz or http://www.spis.co.nz.

http://www.tamaracka.com
http://www.spis.co.nz
http://www.href.com

TextFile

Delphi Developer’s Handbook

While the early crop of
Delphi books (circa 1995)
tended to be general in
nature and aimed at begin-
ning- and intermediate-
level developers, many of
those from late 1996
through 1997 have includ-
ed more specialized and
advanced offerings. One of
the last Delphi books
released in 1997, Delphi
Developer’s Handbook
[SYBEX, 1997], covers a
wide range of topics, but is
nevertheless advanced in its
treatment of those topics.
Written by Marco Cantù
(of SYBEX’s Mastering
Delphi series) and Tim
Gooch (former editor of
the Cobb Group’s Delphi
Developer’s Journal), this
work will be a welcome
addition to your library if
you’re looking for an
advanced reference aimed
more at application devel-
opers than tools (compo-
nent/wizard) developers.

This book hits the ground
running with advanced
information on bit manipu-
lation, long strings, classes,
and levels of protection.
While many of these topics
are not unusual, the treat-
ment certainly is: accessing
the inner structure of long
strings, manipulating classes
in various useful ways, and
circumventing Delphi’s pro-
tection scheme. Similarly, the
second chapter exposes some
of the more esoteric aspects
45 March 1998 Delphi Informant
of Delphi’s component struc-
ture, including working with
component ownership, using
the FindComponent method,
and creating type-safe TList
derivatives.

Chapter 3, on streaming and
persistence, provides an
excellent overview of this
important topic with a thor-
ough discussion of file and
memory streams and tech-
niques for copying data
between them. New stream-
ing classes are also devel-
oped. To my delight, the
authors included a discussion
of the TWriter and TReader
support classes, and how to
use them with streams.

Any comprehensive,
advanced Delphi work
should include a discussion
of components and experts;
Delphi Developer’s Handbook
certainly fulfills this require-
ment. There are chapters on
building components
throughout, from basic prin-
ciples to compound compo-
nents, from using TCollection
classes as properties to data-
aware controls. (In addition
to the latter topic, two chap-
ters cover advanced database
and client/server program-
ming.) Essential component-
related topics such as compo-
nent editors, properties,
property editors, and pack-
ages are also covered.

There is also information
regarding Experts/Wizards
throughout, including a
chapter on Run-Time Type
Information (RTTI), a
nearly 100-page chapter on
Wizards, and a fascinating
chapter on “Other Delphi
Extensions.” The latter
includes a summary of the
ToolsAPI, a discussion of
how to handle Delphi noti-
fications, and an overview
of the Version Control
System (VCS) interface.
The section on hacking
Delphi is most intriguing,
with instructions regarding
a simple means of changing
Delphi’s Component
palette. Finally, many of the
tools developed throughout
Handbook will make useful
additions to your program-
ming arsenal. I’m particu-
larly impressed with the
Object Debugger, which
clones the Object Inspector,
makes it available at run
time, and even adds editing
capabilities to it. An entire
chapter is devoted to build-
ing this useful tool. Several
of these topics are rarely
written about. There are
others, including writing
Windows applications with-
out the VCL (Visual
Component Library), using
Windows messages and API
function calls, and extend-
ing Delphi’s TApplication
and TForm classes.

Some of the newer technolo-
gies are dealt with in a sub-
stantial manner. There are
two chapters on the
Component Object Model
(COM) written by COM
expert John F. Lam. There is
also a good discussion of
some of the Internet-related
technologies, such as
HTML, CGI, and ISAPI.

By no means have I men-
tioned every topic included
in this fine volume. Suffice
it to say, if you’ve been pro-
gramming in Delphi for a
while and are ready to
explore its more advanced
aspects, this book is for
you. If you’re new to
Delphi, you should proba-
bly start with a more basic
work such as Cantù’s
Mastering Delphi 3
[SYBEX, 1997].

— Alan C. Moore, Ph.D.

Delphi Developer’s Handbook
by Marco Cantù, Tim
Gooch, with John F. Lam,
SYBEX, 1151 Marina
Village Parkway, Alameda,
CA 94501, (510) 523-2826.
ISBN: 0-7821-1987-5
Price: US$49.99
(1,134 pages, CD-ROM)

File | New
Directions / Commentary
Delphi and the APIs
Getting to the Source

In an editorial in the December, 1997 issue of Delphi Informant, I discussed the need to make new tech-
nologies and their APIs available in Delphi and the Jedi movement that is attempting to do just that. But

what about the standard APIs? Since Delphi has implemented a large part of the Windows operating sys-
tem, do we need to know the gory details of Windows functions and messages? In everyday programming,
probably not. However, if we’re extending components or accessing functionality not supported by Delphi,
we might need detailed information. Where can we find it?
In the bad old days BD (Before
Delphi), if you were programming for
Windows in C or Pascal, you needed to
work at the API level to a greater extent.
In those 16-bit days, a very popular ref-
erence work was Windows API Bible by
James L. Conger [Waite Group Press,
1992]. This single volume contained
the essential information of the time:
the message system, the various stan-
dard controls, input/output, and even
multimedia and communications.
Today, the existing APIs have grown
considerably, and new ones have been
added to the standard package. To keep
up, the Waite Group’s Bible, written
mainly by Richard J. Simon with help
from Michael Gouker and Brian Barnes,
jumped to three volumes between 1996
and 1997. Let’s examine each.

Windows NT Win32 API SuperBible
provides an excellent introduction to
Windows 32-bit programming — both
Windows 95 and NT 4.0 — and
includes an explanation of how an
application qualifies for the Windows
95 logo. This first volume includes a
discussion of windows and dialog boxes,
menus and other basic interface objects,
message systems (messages themselves
are in the second volume), memory
management, input/output, graphics,
and system information. Some of the
46 March 1998 Delphi Informant
new areas include threads and the reg-
istry. I found one of the last chapters
particularly interesting: “File
Decompression and Installation.” If
you’re interested in building a set of
installation components as part of a
setup-generating system, you’ll find
much of what you need here: functions
to check version information, functions
to manipulate compressed files, and
functions to determine what files
(DLLs) are installed on a user’s system.

Windows 95 Common Controls and
Messages API Bible presents the controls
inherited from Windows 3.x and the
new ones added with Windows 95. It
also includes a complete reference to
Windows messages. If you want to learn
more about the new controls, such as
toolbars, status bars, tree views, and
rich-text edit controls, and extend their
functionality, you’ll find this volume
particularly helpful.

The final volume, Windows 95
Multimedia and ODBC API Bible, pre-
sents Windows’ current support for
Multimedia and ODBC. The latter topic
is presented first and provides informa-
tion on connecting to various DBMSes,
executing SQL statements, converting
data, and more. The multimedia section
provides a detailed account of high- and
low-level API function calls used when
working with audio files (WAV and
MIDI), AVI files, and the Media Control
Interface (MCI). While not indicated in
the title, this volume also discusses the
Telephony Application Programming
Interface (TAPI).

If you’re planning to do a significant
amount of low-level work at the API
level, either in application programming
or component creation, you should con-
sider adding one or more of these vol-
umes to your Delphi library. These ref-
erences include numerous code exam-
ples to show how to access particular
functions. While the code examples in
this series are in C, you should be able
to learn something from them. ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at
Kentucky State University, specializing in
music composition and music theory. He has
been developing education-related applica-
tions with the Borland languages for more
than 10 years. He has published a number
of articles in various technical journals.
Using Delphi, he specializes in writing cus-
tom components and implementing multi-
media capabilities in applications, particu-
larly sound and music. You can reach Alan
via e-mail at acmdoc@aol.com.

	Table of Contents
	Delphi Tools
	LEAD Technologies Announces LEADTOOLS 9.0
	Snowbound Announces RasterMaster 7.0
	IDEALIntroduces Virtual Print Engine 2.2
	MathTools Launches MATCOM
	Ashley Godfrey Releases Delphi Voyager 2
	Imagination Introduces IMAGinE ActiveX Control
	Indigo Rose Announces AutoPlay Menu Studio 1.1
	Seagate Launches Crystal Info 6

	Delphi News
	Borland Expands in Eastern Europe
	ApogeeAwardedPremierPartnerStatusbyBorland
	Keshet Broadcasting to Use Delphi in
	Borland Ships JBuilder Client/Server Suite
	Borland Buys Visigenic

	On the Cover
	COM Automation
	Streaming Objects
	An Example
	Server Application
	Client Application
	Practical Application
	Conclusion
	Begin Listing One — The CompStream Unit

	Informant Spotlight
	Deploying ActiveX Controls
	Using ActiveX in HTML
	Testing ActiveX Controls
	Conclusion

	In Development
	A Sound Beginning
	Now What?
	Optimization
	Soundex Variations
	Other Enhancements
	Save Your Fingers

	DBNavigator
	General Editor Issues
	Getting Help
	Key Macro Recording
	Block Indent and Unindent
	Using Bookmarks
	Incremental Search
	Find Matching Delimiters
	Column Operations
	Conclusion

	Columns & Rows
	The Object-Database Schema
	Connecting Delphi Applications to Object Database
	Programming with an ActiveX Interface
	Conclusion

	Sights & Sounds
	Standards and Intuitiveness
	TMMButtonvs. other Button Components
	Creating the Component
	Painting the Component with the Correct Bitmap
	Declaring Properties
	Audio Capabilities
	Installing the TMMButtonComponent
	Implementation Tips
	Finishing Up
	Begin Listing Two — TMMButtonComponent
	Begin Listing Three — Sample Application

	The API Calls
	New & Used
	Make Room!
	Basic Component Usage
	Seagate Toolbox
	Documentation
	Market Positioning
	Conclusion
	Fact File

	New & Used
	Economy andSpeed
	Flexibility
	Highly Scalable
	Help
	Conclusion
	Fact File

	TextFile
	File I New

